精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(Ⅰ)试讨论的单调性;

(Ⅱ)记的零点为的极小值点为,当时,求证.

【答案】(Ⅰ)详见解析(Ⅱ)见解析

【解析】

(Ⅰ)对函数f(x)求导,分和a<0进行讨论,可得函数单调性;(Ⅱ)对函数g(x)求导,分析单调性,由零点存在性定理可确定的零点即极小值点,从而得到a与的等量关系,将等量关系代入中,利用函数f(x)的单调性即可得到证明.

(Ⅰ) .

,则上单调递增;

,则必有一正一负两根,且正根为.

上单调递增;

上单调递减.

综上可知,当时,上单调递增;

时,上单调递增,在上单调递减.

(Ⅱ)

所以单调递增.

存在零点,且在区间上单调递减,在区间上单调递增,即为的极小值点,

.

知,

所以

,所以.

由()可知,时,单调递增,

因此.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知点A(0,﹣2)B(40),圆C经过点(0,﹣1)(01)(0).斜率为k的直线l经过点B

1)求圆C的标准方程;

2)当k2时,过直线l上的一点P向圆C引一条切线,切点为Q,且满足PQ,求点P的坐标;

3)设MN是圆C上任意两个不同的点,若以MN为直径的圆与直线l都没有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司培训员工某项技能,培训有如下两种方式:

方式一:周一到周五每天培训1小时,周日测试

方式二:周六一天培训4小时,周日测试

公司有多个班组,每个班组60人,现任选两组记为甲组、乙组先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:

第一周

第二周

第三周

第四周

甲组

20

25

10

5

乙组

8

16

20

16

用方式一与方式二进行培训,分别估计员工受训的平均时间精确到,并据此判断哪种培训方式效率更高?

在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面,△ABC是边长为的正三角形,DE分别为ABBC的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)在线段上是否存在一点M,使平面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角坐标系的原点和极坐标系的极点重合,轴非负半轴与极轴重合, 单位长度相同, 在直角坐标系下, 曲线的参数方程为为参数) .

(1) 写出曲线的极坐标方程;

(2) 直线的极坐标方程为,求曲线与直线在平面直角坐标系中的交点坐标 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆,直线,直线过点,倾斜角为,以原点为极点,轴的正半轴为极轴建立极坐标系.

(1)写出直线与圆的交点极坐标及直线的参数方程;

(2)设直线与圆交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线与函数的图象在处相切,设,若在区间[1,2]上,不等式恒成立.则实数m( )

A. 有最大值 B. 有最大值e C. 有最小值e D. 有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,曲线的极坐标方程为,曲线的极坐标方程为

(Ⅰ)求的直角坐标方程;

(Ⅱ)若的交于点,交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数上是单调函数,求实数的取值范围;

2)当时,是否存在,使得的图象在处的切线互相平行,若存在,请给予证明,若不存在,请说明理由

查看答案和解析>>

同步练习册答案