精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,底面,△ABC是边长为的正三角形,DE分别为ABBC的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)在线段上是否存在一点M,使平面?说明理由.

【答案】(Ⅰ)见证明;(Ⅱ) (Ⅲ)见解析

【解析】

(Ⅰ)推导出AA1CDCDAB,由此能证明CD⊥平面AA1B1B

(Ⅱ)取A1B1中点F,连结DF,如图空间直角坐标系Dxyz,利用向量法能求出二面角BAEB1的余弦值.

(Ⅲ)假设线段B1C1上存在点M,使BM⊥平面AB1E.则λ∈[0,1],使得.求出平面AB1法向量,利用向量法能求出在线段B1C1上不存在点M,使BM⊥平面AB1E

(Ⅰ)证明:在三棱柱中,

因为底面,CD平面ABC,

所以

为等边三角形,的中点,

所以.因为

所以平面

(Ⅱ)取中点,连结,则

因为分别为 的中点,

所以

由(Ⅰ)知

如图建立空间直角坐标系

由题意得,,,,

设平面 法向量

,则.即

平面BAE法向量

因为

所以

由题意知二面角为锐角,所以它的余弦值为.

(Ⅲ)解:在线段上不存在点M,使平面.理由如下.

假设线段上存在点M,使平面.则

,使得

因为,所以

,所以

由(Ⅱ)可知,平面法向量

平面,当且仅当

,使得

所以 解得

这与矛盾.

所以在线段上不存在点M,使平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合. 若,且对任意,均有,则集合中元素个数的最大值为( )

A. 5 B. 6 C. 11 D. 13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)求函数的极值点;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为A,下顶点为B,过AOBO为坐标原点)三点的圆的圆心坐标为

(1)求椭圆的方程;

(2)已知点Mx轴正半轴上,过点BBM的垂线与椭圆交于另一点N,若∠BMN=60°,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京地铁八通线西起四惠站,东至土桥站,全长18.964km,共设13座车站.目前八通线执行2014年12月28日制订的计价标准,各站间计程票价(单位:元)如下:

四惠

3

3

3

3

4

4

4

5

5

5

5

5

四惠东

3

3

3

4

4

4

5

5

5

5

5

高碑店

3

3

3

4

4

4

4

5

5

p>5

传媒大学

3

3

3

4

4

4

4

5

5

双桥

3

3

3

4

4

4

4

4

管庄

3

3

3

3

4

4

4

八里桥

3

3

3

3

4

4

通州北苑

3

3

3

3

3

果园

3

3

3

3

九棵树

3

3

3

梨园

/p>

3

3

临河里

3

土桥

四惠

四惠东

高碑店

传媒大学

双桥

管庄

八里桥

通州北苑

果园

九棵树

梨园

临河里

土桥

(Ⅰ)在13座车站中任选两个不同的车站,求两站间票价不足5元的概率;

(Ⅱ)甲乙二人从四惠站上车乘坐八通线,各自任选另一站下车(二人可同站下车),记甲乙二人乘车购票花费之和为X元,求X的分布列;

(Ⅲ)若甲乙二人只乘坐八通线,甲从四惠站上车,任选另一站下车,记票价为元;乙从土桥站上车,任选另一站下车,记票价为元.试比较的方差大小.(结论不需要证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数在区间上的最值;

2)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)试讨论的单调性;

(Ⅱ)记的零点为的极小值点为,当时,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程是为参数),以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点

(1)求曲线的普通方程及直线恒过的定点的坐标;

(2)在(1)的条件下,若,求直线的普通方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年寒假是特殊的寒假,因为抗击疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对线上教育进行调查,其中男生与女生的人数之比为1113,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.

1)完成列联表,并回答能否有99%的把握认为对“线上教育是否满意与性别有关”;

满意

不满意

总计

男生

20

女生

15

合计

120

2)从被调查的对线上教育满意的学生中,利用分层抽样抽取8名学生,再在8名学生中抽取3名学生,作线上学习的经验介绍,其中抽取男生的个数为,求出的分布列及期望值.

参考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

0.706

3.841

5.024

6.635

7.879

10828

查看答案和解析>>

同步练习册答案