精英家教网 > 高中数学 > 题目详情
13.某种细菌在培养过程中,每30分钟分裂一次(一个分裂为两个),经过2小时,这种细菌由一个可以分裂为16个.

分析 由题意可得细菌数构成1为首项2为公比的等比数列,由通项公式求第5项即可.

解答 解:由题意可得细菌数构成1为首项2为公比的等比数列,
经过2小时共1×24=16个,
故答案为:16.

点评 本题考查等比数列的通项公式,从实际问题种抽象出数列是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知等比数列{an}中,a4+a8=$\frac{1}{2}$,则a6(a2+2a6+a10)的值为(  )
A.1B.-4C.$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,互相垂直的两条公路AM、AN旁有一矩形花园ABCD,现欲将其扩建成一个更大的三角形花园APQ,要求P在射线AM上,Q在射线AN上,且PQ过点C,其中AB=30米,AD=20米.记三角形花园APQ的面积为S.
(1)设DQ=x米,将S表示成x的函数.
(2)当DQ的长度是多少时,S最小?并求S的最小值.
(3)要使S不小于1600平方米,则DQ的长应在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC中,角A,B,C对边分别为a,b,c,若$\overrightarrow m$=(2b-c,cosC),$\overrightarrow n$=(a,cosA),且$\overrightarrow m$∥$\overrightarrow n$.
(1)求角A的值;    
(2)若a=$\sqrt{7}$,b+c=4,求S△ABC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某种汽车购车时费用为14万4千元,每年保险、养路、汽油费用9千元;汽车的维修费各年为:第一年2千元,第二年4千元,第三年6千元,依每年2千元的增量逐年增加,则这种汽车最多使用12年报废最合算.(注:最合算即是使用多少年的年平均费用最少)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设a=$\frac{\sqrt{2}}{2}$(sin17°+cos17°),b=2cos213°-1,c=$\frac{\sqrt{3}}{2}$.则a,b,c的大小关系是(  )
A.c<a<bB.a<c<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某科技公司研制成功一种新产品,决定向银行贷款200万元资金用于生产这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列四个命题:①“等边三角形的三个内角都是60°”的逆命题;②“全等三角形的面积相等”的否命题;③“若k>0,则方程x2+3x-k=0有实根”的逆否命题;④参数方程$\left\{\begin{array}{l}x=t+\frac{1}{t}\\ y=t-\frac{1}{t}\end{array}\right.$表示的曲线是双曲线.其中真命题的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=x-sinx对任意的θ∈(0,π),f(cos2θ)+f(msinθ-2)≤0恒成立,则m的最大值是3.

查看答案和解析>>

同步练习册答案