【题目】设数列满足,,且,若表示不超过的最大整数,则( )
A. 2018 B. 2019 C. 2020 D. 2021
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的离心率为,短轴长是2.
(1)求椭圆C的方程;
(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,是函数(,)图象上的任意两点,且角的终边经过点,若时,的最小值为.
(1)求函数的解析式;
(2)当时,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量y件 | 100 | 94 | 93 | 90 | 85 | 78 |
附:对于一组数据,其回归直线的斜率的最小二乘估计值为; 本题参考数值:.
(1)若销量y与单价x服从线性相关关系,求该回归方程;
(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为区间,若对于内任意,都有成立,则称函数是区间的“函数”.
(1)判断函数()是否是“函数”?说明理由;
(2)已知,求证:函数()是“函数”;
(3)设函数是,()上的“函数”,,且存在使得,试探讨函数在区间上零点个数,并用图象作出简要的说明(结果不需要证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下:
试根据图表中的信息解答下列问题:
(1)求全班的学生人数及分数在[70,80)之间的频数;
(2)为快速了解学生的答题情况,老师按分层抽样的方法从位于[70,80),[80,90)和[90,100]分数段的试卷中抽取8份进行分析,再从中任选3人进行交流,求交流的学生中,成绩位于[70,80)分数段的人数X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).在以为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(Ⅰ)求曲线的普通方程和直线的直角坐标方程;
(Ⅱ)设点,若直线与曲线交于,两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com