精英家教网 > 高中数学 > 题目详情
配置某种注射用药剂,每瓶需要加入葡萄糖的量在10到110之间,用黄金分割法寻找最佳加入量时,若第1试点是差点,第2试点是好点,求第三次试验时葡萄糖的加入量。
根据公式

此时差点将区间分成两部分,一部分是,另一部分是
将不包含好点的那部分去掉得存优部分为
根据公式
所以第三次实验时葡萄糖的加入量为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本大题满分12分)已知函数在R上有定义,对任何实数和任何实数,都有
(Ⅰ)证明;(Ⅱ)证明 其中均为常数;
(Ⅲ)当(Ⅱ)中的时,设,讨论内的单调性并求极值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数有下列性质:“若
,使得”成立。
(1)利用这个性质证明唯一;
(2)设A、B、C是函数图象上三个不同的点,试判断△ABC的形状,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数的零点有且只有一个,求的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:如图,射线OAy=2x(x>0),射线OBy= –2x(x>0),动点Px, y)在的内部,N,四边形ONPM的面积为2..
(I)动点P的纵坐标y是其横坐标x的函数,求这个函数y=f(x)的解析式;
(II)确定y=f(x)的定义域.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的定义域;
(2)讨论的奇偶性;
(3)讨论上的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

佛山某公司生产陶瓷,根据历年的情况可知,生产陶瓷每天的固定成本为14000元,每生产一件产品,成本增加210元.已知该产品的日销售量与产量之间的关系式为
,每件产品的售价与产量之间的关系式为

(Ⅰ)写出该陶瓷厂的日销售利润与产量之间的关系式;
(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知方程的两根为,若,求实数的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数的定义域为D,若存在非零实数使得对于任意,有,且,则称为M上的高调函数。
如果定义域为的函数上的高调函数,那么实数的取值范围是     
如果定义域为R的函数是奇函数,当时,,且为R上的4高调函数,那么实数的取值范围是     

查看答案和解析>>

同步练习册答案