精英家教网 > 高中数学 > 题目详情

已知数列中,
(1)求数列的通项;
(2)令求数列的前n项和Tn.

(1)an=,(2)Tn=

解析试题分析:(1)本题为由,当时,,约去整理得到关于的关系式所以累加得(2)因为所以数列的前n项和为数列与数列前n项和的和. 数列前n项和为,而数列前n项和需用错位相减法求解.运用错位相减法求和时需注意三点:一是相减时注意项的符号,二是求和时注意项的个数,三是最后结果需除以
试题解析:(1)
移向整理得出
当n≥2时,an=(an﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a 2﹣a 1)+a1
==1+=,n=1时也适合
所以an=
(2)bn=nan=
Tn=﹣(
令Tn′=,两边同乘以
Tn′=
两式相减得出Tn′===
Tn′=
所以Tn=﹣(
=
考点:由,错位相减法求和

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某地今年年初有居民住房面积为m2,其中需要拆除的旧房面积占了一半,当地有关部门决定每年以当年年初住房面积的10%的住房增长率建设新住房,同时每年拆除xm2的旧住房,又知该地区人口年增长率为4.9‰.
(1)如果10年后该地区的人均住房面积正好比目前翻一番,那么每年应拆除的旧住房面积x是多少?
(2)依照(1)拆房速度,共需多少年能拆除所有需要拆除的旧房?
下列数据供计算时参考:

1.19=2.38
1.00499=1.04
1.110=2.6
1.004910=1.05
1.111=2.85
1.004911=1.06
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为满足
(1)证明数列为等比数列;
(2)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,
(1)求
(2)求证:是等比数列,并求的通项公式
(3)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正项数列中,.对任意的,函数满足.
(1)求数列的通项公式;
(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为.
(1)求数列的通项公式;
(2)设log2an+1 ,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
(1)求证:数列{an-n}是等比数列;
(2)求数列{an}的前n项和Sn
(3)求证:不等式Sn+1≤4Sn对任意n∈N*皆成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和Sn,求通项an.
(1)Sn=3n-1;
(2)Sn=n2+3n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列{an}满足:|a2a3|=10,a1a2a3=125.
(1)求数列{an}的通项公式;
(2)是否存在正整数m,使得≥1?若存在,求m的最小值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案