精英家教网 > 高中数学 > 题目详情
1.数列{an}中,a1=15,3an+1=3an-2(n∈N*),则该数列中相邻两项的乘积是负数的是(  )
A.a21a22B.a22a23C.a23a24D.a24a25

分析 通过对3an+1=3an-2(n∈N*)变形,结合a1=15可知an=-$\frac{2}{3}$n+$\frac{47}{3}$,进而可得结论.

解答 解:∵3an+1=3an-2(n∈N*),
∴an+1-an=-$\frac{2}{3}$(n∈N*),
∴数列{an}是递减数列,
又∵a1=15,
∴an=15-$\frac{2}{3}$(n-1)=-$\frac{2}{3}$n+$\frac{47}{3}$,
令an=0即-$\frac{2}{3}$n+$\frac{47}{3}$=0,
解得:n=$\frac{47}{2}$=23.5,
∴a23a24<0,
故选:C.

点评 本题考查数列的通项及单调性,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知f(x)=x5+x3+x2+x+1,求f(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列中,a4=1,a7+a9=16,则a12的值是(  )
A.15B.30C.31D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知直四棱柱ABCD-A1B1C1D1中,AA1=2,底面ABCD是直角梯形,A是直角,AB∥CD,AB=4,AD=2,DC=1,求异面直线BC1与DC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,则两人在约定时间内相见的概率为$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=3+xlnx的单调递减区间是(  )
A.($\frac{1}{e}$,e)B.(0,$\frac{1}{e}$)C.(-∞,$\frac{1}{e}$)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnx-ax-3(a∈R)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[$\frac{m}{2}$+f′(x)]在区间(t,3)上总存在极值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(1,1)=1,f(m,n)∈N+(m,n∈N+),且对任意m,n∈N+,都有:
(1)f(m,n+1)=f(m,n)+2;
(2)f(m+1,1)=2f(m,1)给出以下三个结论:①f(1,5)=9; ②f(5,1)=16; ③f(5,6)=26.
其中正确的个数为(  )
A.3B.2C.1D.0
51234

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD•BC;若类比该命题,如图(2),三棱锥A-BCD中,AD⊥面ABC若A点在三角形BCD所在平面内的射影为M,则有${S}_{△ABC}^{2}={S}_{△BCM}•{S}_{△BCD}$.

查看答案和解析>>

同步练习册答案