精英家教网 > 高中数学 > 题目详情
16.两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,则两人在约定时间内相见的概率为$\frac{8}{9}$.

分析 设两人分别于x时和y时到达约见地点,要使两人能在约定时间范围内相见,当且仅当|x-y|≤$\frac{2}{3}$.由此能求出两人在约定时间内相见的概率

解答 解:设两人分别于x时和y时到达约见地点,则0≤x≤1,0≤y≤1,
要使两人能在约定时间范围内相见,
当且仅当|x-y|≤$\frac{40}{60}=\frac{2}{3}$.对应的平面区域如图阴影部分,面积为1-2×$\frac{1}{2}×\frac{1}{3}×\frac{1}{3}$,
∴由几何概型公式得到两人在约定时间内相见的概率$\frac{1-2×\frac{1}{2}×\frac{1}{3}×\frac{1}{3}}{1}=\frac{8}{9}$.
故答案为:$\frac{8}{9}$

点评 本题考查概率的求法,解决此类问题的关键是熟练掌握几何概型的定义与概率计算公式,而几何概率模型一般通过事件的长度、面积或者体积之比来求事件发生的概率,因此只要根据题意判断出题目是属于那种类型即可,此题属于中档题,是根据面积之比来计算事件发生的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知M=sin144°,N=cos(-292°),则M>N(填“>”,“<”,“=”).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知条件p:关于x的函数y=(10-a2x在R上单调递增;条件q:存在实数m∈[-1,2]使得不等式a2-2a-5≤$\sqrt{{m^2}+5}$成立.如果“p且q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足a1=a,a2=b,an+2=an+1-an(n∈N*),Sn是{an}的前n项的和,则a2004+S2004=(  )
A.a+bB.a-bC.-a+bD.-a-b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知α是第三象限的角,且cos(85°+α)=$\frac{4}{5}$,则sin(α-95°)的值为(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列{an}中,a1=15,3an+1=3an-2(n∈N*),则该数列中相邻两项的乘积是负数的是(  )
A.a21a22B.a22a23C.a23a24D.a24a25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x3+ax2+bx的图象在x=1处取得极值4.
(1)求函数f(x)的单调区间;
(2)对于函数y=g(x),若存在两个不相等的正数s,t(s<t),当s≤x≤t时,函数y=g(x)的值域是[s,t],则把区间[s,t]叫函数y=g(x)的“正保值区间“.函数y=f(x)是否存在“正保值区间“?若存在,求出所有的“正保值区间“;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数f(x)=x+2$\sqrt{1-x}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax2-(a+1)x+1,a∈R.
(Ⅰ)若f(x)在区间[1,2]上不单调,求a的取值范围;
(Ⅱ)若存在m≥0使关于x的方程f(|x|)=m2+2m+2有四个不同的实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案