| A. | (-2,0) | B. | (0,-2) | C. | (-4,-2) | D. | (-1,-1) |
分析 先依据二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用圆的方程画出图形,确定α最大时点P的位置即可.
解答
解:如图阴影部分表示:$\left\{\begin{array}{l}{x-y+2≥0}\\{y+2≥0}\\{x+y+2≤0}\end{array}\right.$,确定的平面区域,
当P离圆O最近时,α最大,如图,过原点O作OP垂直直线x+y+2=0,垂足为P.
此时点P坐标为:(-1,-1),
故选:D.
点评 本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{e}$ | B. | $\frac{1}{2}$e | C. | e | D. | 2e |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | [0,+∞) | C. | [0,1] | D. | [0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\frac{{{x^2}-1}}{x-1}$,g(x)=x+1 | B. | f(x)=x,g(x)=$\root{3}{x^3}$ | ||
| C. | f(x)=$\sqrt{(x+1)(x+2)}$,g(x)=$\sqrt{x+1}\sqrt{x+2}$ | D. | f(x)=1,g(x)=$\left\{\begin{array}{l}1,x>0\\ 1,x<0\end{array}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{7}$ | B. | $\frac{2}{7}$ | C. | $\frac{9}{10}$ | D. | $\frac{4}{21}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com