精英家教网 > 高中数学 > 题目详情
9.锐角△ABC中角A,B,C的对边分别为a,b,c,若a=4,b=3,且△ABC的面积为3$\sqrt{3}$,则c=$\sqrt{13}$.

分析 根据a=4,b=3,且△ABC的面积为3$\sqrt{3}$,利用公式$S=\frac{1}{2}absinC$求出sinC,可得cosC,根据余弦定理可得c的值.

解答 解:由题意,a=4,b=3,且△ABC的面积为3$\sqrt{3}$,
根据公式$S=\frac{1}{2}absinC$,可得:$3\sqrt{3}=\frac{1}{2}×3×4×sinC$
∴sinC=$\frac{\sqrt{3}}{2}$,
△ABC是锐角,
∴C=$\frac{π}{3}$.
则cosC=$\frac{1}{2}$.
由余弦定理可得:$\frac{1}{2}$=$\frac{16+9-{c}^{2}}{24}$,
解得c=$\sqrt{13}$.
故答案为:$\sqrt{13}$.

点评 本题考查三角形的面积公式和余弦定理的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,已知点A(-a,0)、C(0,b),且S△OAC=1.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,若D(a,0),且|BD|=$\frac{4}{5}$$\sqrt{17}$,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|x∈N|2≤x≤5},B={x|y=$\sqrt{3-x}$},则A∩B=(  )
A.{2}B.{2,3}C.{2,3,4}D.{4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,过椭圆C的右焦点且垂直于x轴的直线与椭圆交于A,B两点,且|AB|=$\sqrt{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点(1,0)的直线l交椭圆C于E,F两点,若存在点G(-1,y0)使△EFG为等边三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.要得到函数y=sin(2x+$\frac{π}{3}$)的图象,只需将函数y=cos2x的图象(  )
A.向左平移$\frac{π}{12}$个单位B.向左平移$\frac{π}{6}$个单位
C.向右平移$\frac{π}{12}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知钝角三角形的三边长度从小到大构成公比为q的等比数列,则q2的取值范围是$(\frac{{1+\sqrt{5}}}{2},\frac{{3+\sqrt{5}}}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sin(2x-$\frac{π}{4}$)+cos(2x-$\frac{3π}{4}$),x∈R.
(1)求f(x)的最小正周期和最大值;
(2)已知α,β∈(0,$\frac{π}{2}$),且f(α)=$\sqrt{2}$,cos(α+β)=$\frac{1}{3}$,求tanβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在2016年高考结束后,针对高考成绩是否达到了考生自己预期水平的情况,某校在高三部分毕业生内部进行了抽样调查,现从高三年级A、B、C、D、E、F六个班随机抽取了50人,将统计结果制成了如下的表格:
班级
抽取人数10 12 12 
其中达到预期水平的人数 3 6 6
(Ⅰ)根据上述的表格,估计该校高三学生2016年的高考成绩达到自己的预期水平的概率;
(Ⅱ)若从E班、F班的抽取对象中,进一步各班随机选取2名同学进行详细调查,记选取的4人中,高考成绩没有达到预期水平的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=x3-6bx+3b在(0,1)内有极小值,则实数b的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(-∞,1)C.(0,+∞)D.(0,1)

查看答案和解析>>

同步练习册答案