18£®ÔÚ2016Äê¸ß¿¼½áÊøºó£¬Õë¶Ô¸ß¿¼³É¼¨ÊÇ·ñ´ïµ½ÁË¿¼Éú×Ô¼ºÔ¤ÆÚˮƽµÄÇé¿ö£¬Ä³Ð£ÔÚ¸ßÈý²¿·Ö±ÏÒµÉúÄÚ²¿½øÐÐÁ˳éÑùµ÷²é£¬ÏÖ´Ó¸ßÈýÄê¼¶A¡¢B¡¢C¡¢D¡¢E¡¢FÁù¸ö°àËæ»ú³éÈ¡ÁË50ÈË£¬½«Í³¼Æ½á¹ûÖÆ³ÉÁËÈçϵıí¸ñ£º
°à¼¶
³éÈ¡ÈËÊý10 12 12 
ÆäÖдﵽԤÆÚˮƽµÄÈËÊý 3 6 6
£¨¢ñ£©¸ù¾ÝÉÏÊöµÄ±í¸ñ£¬¹À¼Æ¸ÃУ¸ßÈýѧÉú2016ÄêµÄ¸ß¿¼³É¼¨´ïµ½×Ô¼ºµÄÔ¤ÆÚˮƽµÄ¸ÅÂÊ£»
£¨¢ò£©Èô´ÓE°à¡¢F°àµÄ³éÈ¡¶ÔÏóÖУ¬½øÒ»²½¸÷°àËæ»úѡȡ2Ãûͬѧ½øÐÐÏêϸµ÷²é£¬¼ÇѡȡµÄ4ÈËÖУ¬¸ß¿¼³É¼¨Ã»ÓдﵽԤÆÚˮƽµÄÈËÊýΪ¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

·ÖÎö £¨¢ñ£©¸ù¾Ý±í¸ñÈ·¶¨³ö50ÈË´ïµ½×Ô¼ºÊµ¼ÊµÄˮƽµÄÈËÊý£¬¼´¿ÉÇó³öËùÇó¸ÅÂÊ£»
£¨¢ò£©È·¶¨³öµ÷²éµÄ4ÈËÖи߿¼³É¼¨Ã»Óдﵽʵ¼ÊˮƽµÄÈËÊýΪ¦Î£¬Çó³ö¸÷×ԵĸÅÂÊ£¬µÃµ½·Ö²¼ÁУ¬ÔÙÇó³öÊýѧÆÚÍûÖµ£®

½â´ð ½â£º£¨¢ñ£©¸ù¾ÝÌâÒ⣬µ÷²éµÄ50ÈËÖдﵽ×Ô¼ºÊµ¼ÊµÄˮƽÓУº
3+6+6+6+4+3=28£¨ÈË£©£¬
¹ÊËùÇóµÄ¸ÅÂÊΪP=$\frac{28}{50}$=0.56£»
£¨¢ò£©µ÷²éµÄ4ÈËÖи߿¼³É¼¨Ã»Óдﵽʵ¼ÊˮƽµÄÈËÊýΪ¦Î£¬
Ôò¦Î=0£¬1£¬2£¬3£»
µ±P£¨¦Î=0£©=$\frac{{C}_{4}^{2}{•C}_{3}^{2}}{{C}_{6}^{2}{•C}_{4}^{2}}$=$\frac{1}{5}$£»
P£¨¦Î=1£©=$\frac{{C}_{2}^{1}{•C}_{4}^{1}{•C}_{3}^{2}{+C}_{4}^{2}{•C}_{3}^{1}}{{C}_{6}^{2}{•C}_{4}^{2}}$=$\frac{7}{15}$£»
P£¨¦Î=2£©=$\frac{{C}_{2}^{2}{•C}_{3}^{2}{+C}_{2}^{1}{•C}_{4}^{1}{•C}_{3}^{1}}{{C}_{6}^{2}{•C}_{4}^{2}}$=$\frac{3}{10}$£»
P£¨¦Î=3£©=$\frac{{C}_{2}^{2}{•C}_{3}^{1}}{{C}_{6}^{2}{•C}_{4}^{2}}$=$\frac{1}{30}$£¬
ËùÇóµÄ·Ö²¼ÁÐΪ

¦Î0123
P$\frac{1}{5}$$\frac{7}{15}$$\frac{3}{10}$$\frac{1}{30}$
ÔòE£¨¦Î£©=0¡Á$\frac{1}{5}$+1¡Á$\frac{7}{15}$+2¡Á$\frac{3}{10}$+3¡Á$\frac{1}{30}$=$\frac{53}{30}$£®

µãÆÀ ±¾Ì⿼²éÁËÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈôÖ±Ïßy=4xÊÇÇúÏßf£¨x£©=x4+aµÄÒ»ÌõÇÐÏߣ¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èñ½Ç¡÷ABCÖнÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èôa=4£¬b=3£¬ÇÒ¡÷ABCµÄÃæ»ýΪ3$\sqrt{3}$£¬Ôòc=$\sqrt{13}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Ô²x2+y2-2y-3=0µÄÔ²ÐÄ×ø±êÊÇ£¨0£¬1£©£¬°ë¾¶2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{2x+y-5¡Ü0}\\{x-y-1¡Ü0}\\{x¡Ý1}\end{array}\right.$£¬Èôz=ax+y½öÔڵ㣨2£¬1£©´¦È¡µÃ×î´óÖµ£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-1£©B£®£¨2£¬+¡Þ£©C£®£¨0£¬2£©D£®£¨-1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ä³¹¤³§ÎªÁ˽âÓõçÁ¿yÓëÆøÎÂx¡æÖ®¼äµÄ¹ØÏµ£¬Ëæ»úͳ¼ÆÁË5ÌìµÄÓõçÁ¿Óëµ±ÌìÆ½¾ùÆøÎ£¬µÃµ½ÈçÏÂͳ¼Æ±í£º
 ÈÕÆÚ 8ÔÂ1ÈÕ8ÔÂ7ÈÕ 8ÔÂ14ÈÕ 8ÔÂ18ÈÕ  8ÔÂ25ÈÕ
 Æ½¾ùÆøÎ£¨¡æ£© 33 30 32 30 25
 ÓõçÁ¿£¨Íò¶È£© 38 35 41 36 30
$\sum_{i=1}^{5}$xiyi=5446£¬$\sum_{i=1}^{5}$xi2=4538£¬$\widehat{b}$=$\frac{\sum_{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum_{i=1}^{5}{{x}_{i}}^{2}-5{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
£¨1£©Çë¸ù¾Ý±íÖеÄÊý¾Ý£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì£¬¾ÝÆøÏóÔ¤±¨9ÔÂ3Èյį½¾ùÆøÎÂÊÇ23¡æ£¬ÇëÔ¤²â9ÔÂ3ÈÕµÄÓõçÁ¿£»£¨½á¹û±£ÁôÕûÊý£©
£¨2£©´Ó±íÖÐÈÎÑ¡Á½Ì죬ÇóÓõçÁ¿£¨Íò¶È£©¶¼³¬¹ý35µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{2x+y-5¡Ü0}\\{x-y-1¡Ü0}\\{x¡Ý1}\end{array}\right.$£¬Èôz=3x+yµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®6B£®7C£®0D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=£¨1-m£©lnx+$\frac{m}{2}{x^2}$-x£¬m¡ÊRÇÒm¡Ù0£®
£¨¢ñ£©µ±m=2ʱ£¬Áîg£¨x£©=f£¨x£©+log2£¨3k-1£©£¬kΪ³£Êý£¬Çóº¯Êýy=g£¨x£©µÄÁãµãµÄ¸öÊý£»
£¨¢ò£©Èô²»µÈʽf£¨x£©£¾1-$\frac{1}{m}$ÔÚx¡Ê[1£¬+¡Þ£©ÉϺã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽÊÇan=$\left\{\begin{array}{l}{2^{-n}}\;\;\;\;\;\;£¨nÊÇÆæÊý£©\\ \frac{1}{{2n+{n^2}}}\;\;£¨nÊÇżÊý£©\end{array}$£¬ÔòËüµÄǰ4ÏîºÍΪ$\frac{19}{24}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸