精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=2x+2-x
(1)求方程f(x)=$\frac{5}{2}$的根;
(2)求证:f(x)在[0,+∞)上是增函数;
(3)若对于任意x∈[0,+∞),不等式f(2x)≥f(x)-m恒成立,求实数m的最小值.

分析 (1)求出2x的值,从而求出方程的根即可;(2)根据函数单调性的定义证明即可;(3)求出f(2x)的表达式,得到m≥f(x)-f(2x)=f(x)-[f(x)]2+2,从而求出m的最小值即可.

解答 (1)解:方程$f(x)=\frac{5}{2}$,即${2^x}+{2^{-x}}=\frac{5}{2}$,
亦即${({2^x})^2}-\frac{5}{2}×{2^x}+1=0$,
∴2x=2或${2^x}=\frac{1}{2}$,
∴x=1或x=-1.…(4分)
(2)证明:设0≤x1<x2
则$f({x_1})-f({x_2})={2^{x_1}}+{2^{-{x_1}}}-({2^{x_2}}+{2^{-{x_2}}})=\frac{{({2^{x_2}}-{2^{x_1}})(1-{2^{{x_1}+{x_2}}})}}{{{2^{x_1}}{2^{x_2}}}}<0$,
∴f(x1)<f(x2),∴f(x)在[0,+∞)上是增函数.…(8分)
(3)解:由条件知f(2x)=22x+2-2x=(2x+2-x2-2=(f(x))2-2,
因为f(2x)≥f(x)-m对于x∈[0,+∞)恒成立,且f(x)>0,
m≥f(x)-f(2x)=f(x)-[f(x)]2+2.
又x≥0,∴由(2)知f(x)最小值为2,
∴f(x)=2时,m最小为2-4+2=0.…(12分)

点评 本题考查了函数的单调性、最值问题,考查解方程以及二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2e-x,当曲线y=f(x)的切线斜率为负数时,求切线在x轴上截距的取值范围(-∞,0)∪[2$\sqrt{2}$+3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)是定义在R上的偶函数,且当x≥0时,f(x+2)=f(x),若f(x)满足:
①x∈[0,2)时,f(x)=a-|x-b|,
②f(x)是定义在R上的周期函数,
③存在m使得f(x+m)=-f(m-x)
则a+b的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow a$=(cos$\frac{3}{2}$x,-sin$\frac{3}{2}$x),$\overrightarrow b$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),x∈[0,$\frac{π}{2}$].若函数f(x)=$\overrightarrow a$•$\overrightarrow b$-$\frac{1}{2}$λ|${\overrightarrow a$+$\overrightarrow b}$|的最小值为-$\frac{3}{2}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,$\sqrt{3}$(tanB+tanC)=tanBtanC-1,则sin2A=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.“p∧q为假”是“p∨q为假”的必要不充分条件.(在“充分不必要”“必要不充分”“充要”“既不充分又不必要”中选填一个)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2$\sqrt{3}$sinxcosx+2cos2x.
(1)求f($\frac{π}{24}$)的值;
(2)若函数f(x)在区间[-m,m]上是单调递增函数,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)求值:(6.25)${\;}^{\frac{1}{2}}$-(-π)0-(-$\frac{8}{27}$)${\;}^{\frac{2}{3}}$+(1.5)-2
(2)解不等式:73x<($\frac{1}{7}$)12-6x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)求等比数列1,$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$,…的前9项和.
(2)如果等差数列{an}的前4项的和是10,前7项的和是28,求其前3项和.

查看答案和解析>>

同步练习册答案