精英家教网 > 高中数学 > 题目详情
20.已知一平面与一正方体的12条棱的所成角都等于α,则sinα=$\frac{\sqrt{3}}{3}$.

分析 棱A1A,A1B1,A1D1与平面AB1D1所成的角相等,平面AB1D1就是与正方体的12条棱的夹角均为θ的平面.则∠A1AO=θ,即可得出.

解答 解:∵棱A1A,A1B1,A1D1与平面AB1D1所成的角相等,
∴平面AB1D1就是与正方体的12条棱的夹角均为θ的平面.则∠A1AO=θ,
设棱长为:1,A1O=$\frac{\sqrt{2}}{2}$,AO=$\sqrt{1+(\frac{\sqrt{2}}{2})^{2}}$=$\frac{\sqrt{6}}{2}$,易知sinθ=$\frac{{A}_{1}O}{AO}$=$\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}}{2}}$=$\frac{\sqrt{3}}{3}$.
故答案为:$\frac{\sqrt{3}}{3}$.

点评 本题考查了正方体的性质、线面角,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若曲线C为到点(0,1)和(0,-1)距离之和为4的动点的轨迹,则曲线C的方程为$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1 (a>b>0)的离心率为$\frac{\sqrt{3}}{3}$,直线l:y=x+2与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C1的左、右焦点分别为F1、F2,若直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M.
(i)求点M的轨迹C2的方程;
(ii)过点F2作两条相互垂直的直线交曲线C2于A、C、B、D,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点A为平面α内一点,点B为平面α外一点,直线AB与平面α成60°角,平面α内有一动点P,当∠ABP=45°时,则动点P的轨迹为(  )
A.椭圆B.C.双曲线的一支D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{4x}{2+x}$,数列{an}满足a1=f(1),an+1=f(an).
(1)求证:数列{$\frac{1}{{a}_{n}}$-$\frac{1}{2}$}是等比数列;
(2)不等式$\frac{2}{{a}_{1}}$+$\frac{{2}^{2}}{{a}_{2}}$+…+$\frac{{2}^{n}}{{a}_{n}}$≥t+$\frac{n}{2}$,n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的函数f(x)满足:①f(-x)=-f(x);②f(x+2)=f(x);③x∈[0,1]时,f(x)=log${\;}_{\frac{3}{4}}$(x2-x+1),则函数y=f(x)-log3|x|的零点个数为(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l:y=kx+1,圆C:(x-1)2+y2=3.
(1)试证明:不论k为何实数,直线l和圆C总有两个交点;
(2)若直线1和圆C相交于M、N两点,且OM⊥ON(O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为4$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设过点B(0,m)(m>0)的直线l与椭圆C相交于E,F两点,点B关于原点的对称点为D,若点D总在以线段EF为直径的圆内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b是正实数,命题p为“若lga>lgb,则a>b”,则(  )
A.命题p的逆命题为“若a>b,则lga>lgb”,且该命题为假命题
B.命题p的否命题为“若lga>lgb,则a≤b”,且该命题为真命题
C.命题p的逆否命题为“若a≤b,则lga≤lgb”,且该命题为真命题
D.命题p的否定为“若lga≤lgb,则a≤b”,且该命题为假命题

查看答案和解析>>

同步练习册答案