9£®ÒÑÖªÁ½¸öÎÞÇîÊýÁÐ{an}£¬{bn}·Ö±ðÂú×ã$\left\{\begin{array}{l}{{a}_{1}=1}\\{|{a}_{n+1}-{a}_{n}|=2}\end{array}\right.$£¬$\left\{\begin{array}{l}{{b}_{1}=-1}\\{|\frac{{b}_{n+1}}{{b}_{n}}|=2}\end{array}\right.$£¬ÆäÖÐn¡ÊN*£¬ÉèÊýÁÐ{an}£¬{bn}µÄǰnÏîºÍ·Ö±ðΪSn¡¢Tn£®
£¨1£©ÈôÊýÁÐ{an}£¬{bn}¶¼ÎªµÝÔöÊýÁУ¬ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£®
£¨2£©ÈôÊýÁÐ{cn}Âú×㣺´æÔÚΨһµÄÕýÕûÊýk£¨k¡Ý2£©£¬Ê¹µÃck£¼ck-1£¬³ÆÊýÁÐ{cn}Ϊ¡°k×¹µãÊýÁС±£®
¢ÙÈôÊýÁÐ{an}Ϊ¡°5×¹µãÊýÁС±£¬ÇóSn£®
¢ÚÈôÊýÁÐ{an}Ϊ¡°p×¹µãÊýÁС±£¬ÊýÁÐ{bn}Ϊ¡°q×¹µãÊýÁС±£¬ÊÇ·ñ´æÔÚÕýÕûÊým£¬Ê¹µÃSm+1=Tm£¬Èô´æÔÚ£¬ÇómµÄ×î´óÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÁ½ÊýÁÐΪµÝÔöÊýÁУ¬½áºÏµÝÍÆÊ½¿ÉµÃan+1-an=2£¬b2=-2b1£¬bn+2=2bn+1£¬n¡ÊN*£¬Óɴ˿ɵÃÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÊýÁÐ{bn}´ÓµÚ¶þÏîÆð¹¹³ÉµÈ±ÈÊýÁУ¬È»ºóÀûÓõȲîÊýÁк͵ȱÈÊýÁеÄͨÏʽÇóµÃ´ð°¸£»
£¨2£©¢Ù¸ù¾ÝÌâÄ¿Ìõ¼þÅжϣºÊýÁÐ{an}±ØÎª1£¬3£¬5£¬7£¬5£¬7£¬9£¬11£¬¡­£¬¼´Ç°4ÏîΪÊ×ÏîΪ1£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬´ÓµÚ5ÏʼΪÊ×Ïî5£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬Çó½âSn¼´¿É£®
¢ÚÔËÓÃÊýÁÐ{bn}Ϊ¡°×¹µãÊýÁС±ÇÒb1=-1£¬×ÛºÏÅжÏÊýÁÐ{bn}ÖÐÓÐÇÒÖ»ÓÐÁ½¸ö¸ºÏ¼ÙÉè´æÔÚÕýÕûÊým£¬Ê¹µÃSm+1=Tm£¬ÏÔÈ»m¡Ù1£¬ÇÒTmÎªÆæÊý£¬¶ø{an}Öи÷Ïî¾ùÎªÆæÊý£¬¿ÉµÃm±ØÎªÅ¼Êý£® ÔÙÔËÓò»µÈʽ֤Ã÷m¡Ü6£¬Çó³öÊýÁм´¿É£®

½â´ð ½â£º£¨1£©¡ßÊýÁÐ{an}£¬{bn}¶¼ÎªµÝÔöÊýÁУ¬
¡àÓɵÝÍÆÊ½¿ÉµÃan+1-an=2£¬b2=-2b1£¬bn+2=2bn+1£¬n¡ÊN*£¬
ÔòÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÊýÁÐ{bn}´ÓµÚ¶þÏîÆð¹¹³ÉµÈ±ÈÊýÁУ®
¡àan=2n-1£¬${b}_{n}=\left\{\begin{array}{l}{-1£¬n=1}\\{{2}^{n-1}£¬n¡Ý2}\end{array}\right.$£»                            
£¨2£©¢Ù¡ßÊýÁÐ{an}Âú×㣺´æÔÚΨһµÄÕýÕûÊýk=5£¬Ê¹µÃak£¼ak-1£¬ÇÒ|an+1-an|=2£¬
¡àÊýÁÐ{an}±ØÎª1£¬3£¬5£¬7£¬5£¬7£¬9£¬11£¬¡­£¬¼´Ç°4ÏîΪÊ×ÏîΪ1£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬´ÓµÚ5ÏʼΪÊ×Ïî5£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬
¹Ê${S}_{n}=\left\{\begin{array}{l}{{n}^{2}£¬n¡Ü4}\\{{n}^{2}-4n+16£¬n¡Ý5}\end{array}\right.$£»                                   
¢Ú¡ß$|\frac{{b}_{n+1}}{{b}_{n}}|=2$£¬¼´bn+1=¡À2bn£¬
¡à|bn|=2n-1£¬
¶øÊýÁÐ{bn}Ϊ¡°×¹µãÊýÁС±ÇÒb1=-1£¬
¡àÊýÁÐ{bn}ÖÐÓÐÇÒÖ»ÓÐÁ½¸ö¸ºÏ
¼ÙÉè´æÔÚÕýÕûÊým£¬Ê¹µÃSm+1=Tm£¬ÏÔÈ»m¡Ù1£¬ÇÒTmÎªÆæÊý£¬¶ø{an}Öи÷Ïî¾ùÎªÆæÊý£¬
¡àm±ØÎªÅ¼Êý£®                                                
Ê×ÏÈÖ¤Ã÷£ºm¡Ü6£®
Èôm£¾7£¬ÊýÁÐ{an}ÖУ¨Sm+1£©max=1+3+¡­+£¨2m+1£©=£¨m+1£©2£¬
¶øÊýÁÐ{bn}ÖУ¬bm±ØÈ»ÎªÕý£¬·ñÔò${T}_{m}=-1+{b}_{2}+¡­+£¨-{2}^{m-1}£©$¡Ü-1+21+¡­+2m-2+£¨-2m-1£©=-3£¼0£¬ÏÔȻì¶Ü£»
¡à$£¨{T}_{m}£©_{min}=-1+{2}^{1}+¡­+{2}^{m-3}+£¨-{2}^{m-2}£©+{2}^{m-1}$=2m-1-3£®
Éè${c}_{m}={2}^{m-1}-£¨m+1£©^{2}-3$£¬
Éè${d}_{m}={c}_{m+1}-{c}_{m}={2}^{m-1}-2m-3$£¬
¶ø${d}_{m+1}-{d}_{m}={2}^{m-1}-2£¾$0£¨m£¾7£©£¬
¡à{dm}£¨m£¾7£©ÎªÔöÊýÁУ¬ÇÒd7£¾0£¬Ôò{cm}£¨m£¾7£©ÎªÔöÊýÁУ¬¶øc8£¾0£¬
¡à£¨Tm£©min£¾£¨Sm£©max£¬
¼´m¡Ü6£®                                                     
µ±m=6ʱ£¬¹¹Ô죺{an}Ϊ1£¬3£¬1£¬3£¬5£¬7£¬9£¬¡­£¬{bn}Ϊ-1£¬2£¬4£¬8£¬-16£¬32£¬64£¬¡­
´Ëʱp=2£¬q=4£®
¡àmmax=6£¬¶ÔÓ¦µÄp=2£¬q=4£®

µãÆÀ ±¾ÌâÊÇж¨ÒåÌ⣬¿¼²éÁËÊýÁеÝÍÆÊ½£¬×ۺϿ¼²éѧÉúÔËÓÃж¨ÒåÇó½âÊýÁеÄÎÊÌ⣬¿¼²éÁË·ÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÏÂÁи÷ʽÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®tan735¡ã£¾tan800¡ãB£®tan1£¾-tan2C£®tan$\frac{5¦Ð}{7}$£¼tan$\frac{4¦Ð}{7}$D£®tan$\frac{9¦Ð}{8}$£¼tan$\frac{¦Ð}{7}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªÅ×ÎïÏßx2=4y¹ý½¹µãµÄÏÒ±»½¹µã·Ö³É³¤¶ÈΪm£¬nµÄÁ½²¿·Ö£¬Ôò$\frac{1}{m}$+$\frac{1}{n}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÏÂÁи÷½ÇÓë320¡ã½ÇÖÕ±ßÏàͬµÄÊÇ£¨¡¡¡¡£©
A£®45¡ãB£®-50¡ãC£®-40¡ãD£®920¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔڵȲîÊýÁÐ{an}ÖУ¬a1=1£¬a1£¬a3£¬7a3³ÉµÈ±ÈÊýÁУ¬¼ÇÊýÁÐ{$\frac{1}{{a}_{n}{a}_{n+1}}$}µÄǰnÏîºÍΪSn£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÈôS1¡¢Sm¡¢S16³ÉµÈ±ÈÊýÁУ¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÊýÁÐ{an}µÄǰÈýÏîÒÀ´ÎΪ-2£¬2£¬6£¬ÇÒǰnÏîºÍSnÊÇnµÄ²»º¬³£Êý¶¥µÄ¶þ´Îº¯Êý£¬Ôòa100=394£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èç¹ûA={x|x£¾-1}£¬ÄÇôÏÂÁбíʾÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®0⊆AB£®{0}¡ÊAC£®∅¡ÊAD£®{0}⊆A

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªsin¦Á=-3cos¦Á£¬Çósin¦Á£¬cos¦Á£¬tan¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìºþ±±ÏåÑôËÄÖиßÈýÆßÔÂÖÜ¿¼ÈýÊýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

Ò»¸ö¿Ú´ü×°Óиö°×ÇòºÍ¸öºÚÇò£¬ÔòÏÈÃþ³ö¸ö°×Çòºó·Å»Ø£¬ÔÙÃþ³ö¸ö°×ÇòµÄ¸ÅÂÊÊÇ£¨ £©

A£® B£® C£® D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸