精英家教网 > 高中数学 > 题目详情
不等式(
1
2
 x2+ax<(
1
2
2x+a-2恒成立,则a的取值范围是(  )
A、[-2,2]
B、(-2,2)
C、[0,2]
D、[-3,3]
考点:指数函数单调性的应用
专题:计算题,函数的性质及应用
分析:借助指数函数单调性不等式可化为x2+ax>2x+a-2,亦即x2+(a-2)x-a+2>0恒成立,则△=(a-2)2-4(-a+2)<0,解出即可.
解答: 解:不等式(
1
2
 x2+ax<(
1
2
2x+a-2恒成立,即x2+ax>2x+a-2,亦即x2+(a-2)x-a+2>0恒成立,
则△=(a-2)2-4(-a+2)<0,解得-2<a<2,
故a的取值范围是(-2,2),
故选:B.
点评:本题考查指数函数单调性及其应用,考查恒成立问题,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>b>0)半焦距为c,过焦点且斜率为1的直线与双曲线C的左右两支各有一个交点,若抛物线y2=4cx的准线被双曲线C截得的弦长为
2
2
3
be2(e为双曲线C的离心率),则e的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,i是虚数单位.若a+i=
bi
1+i
,则a+bi=(  )
A、2+iB、2-i
C、1+2iD、1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点作直线交抛物线于P(x1,y1)、Q(x2,y2)两点,若x1+x2=2,|PQ|=4,则抛物线方程是(  )
A、y2=4x
B、y2=8x
C、y2=2x
D、y2=6x

查看答案和解析>>

科目:高中数学 来源: 题型:

i
1+i
=a+bi(a、b∈R,i为虚数单位),则a+b=(  )
A、
3
2
B、1
C、0
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、钝角不一定是第二象限的角
B、终边相同的角一定相等
C、终边与始边重合的角是零角
D、相等的角终边相同

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2-x,x≤0
4-x2
,0<x≤2
,则
2
-2
f(x)dx的值为(  )
A、π+6B、π-2C、2πD、8

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求值:sin50°(1+
3
tan10°);
(2)已知sin(α+2β)=3sinα,求
tan(α+β)
tanβ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A、B、C的对边,2bcosC=2a-c.
(Ⅰ)求B;
(Ⅱ)若点M为边BC的中点,AM=2
3
,求a+c的值.

查看答案和解析>>

同步练习册答案