精英家教网 > 高中数学 > 题目详情

已知函数处取得极值.
(1)求实数的值;
(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围;
(3)证明:对任意的正整数,不等式都成立.

(1) a=1. (2), (3) 利用导数判断函数的单调性,然后再利用单调性及数列知识证明即可

解析试题分析:(1)                
时,取得极值,                
解得经检验a=1符合题意. 
(2)由a=1知 由,得 
在区间上恰有两个不同的实数根等价于在区间上恰有两个不同的实数根.           
时,,于是上单调递增; 
时,,于是上单调递减.
依题意有,
解得,               
(3) 的定义域为,由(1)知,
得,x=0或(舍去),  时, ,单调递增;
时, ,单调递减. 上的最大值.                        
,故(当且仅当x=0时,等号成立)
对任意正整数n,取得,  
.
.
考点:本题考查了导数的运用
点评:导数本身是个解决问题的工具,是高考必考内容之一,高考往往结合函数甚至是实际问题考查导数的应用,求单调、最值、完成证明等,请注意归纳常规方法和常见注意点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数图像上点处的切线与直线平行(其中),     
(I)求函数的解析式;
(II)求函数上的最小值;
(III)对一切恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值.
(1)求的值;
(2)求的单调区间;
(3)若当时恒有成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)试判断函数的单调性,并说明理由;
(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值.
(1)求的值;
(2)求的单调区间;
(3)若当时恒有成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知时有极大值6,在时有极小值,求的值;并求在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为实数.
(Ⅰ) 若处取得的极值为,求的值;
(Ⅱ)若在区间上为减函数,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若存在极值,求的取值范围;
(2)若,问是否存在与曲线都相切的直线?若存在,判断有几条?并求出公切线方程,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数

(1)若处取极值,求的值;
(2)设直线将平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域(不包括边界),若图象恰好位于其中一个区域,试判断其所在区域并求出相应的的范围.

查看答案和解析>>

同步练习册答案