已知函数
在
处取得极值.
(1)求实数
的值;
(2)若关于
的方程
在区间
上恰有两个不同的实数根,求实数
的取值范围;
(3)证明:对任意的正整数
,不等式
都成立.
(1) a=1. (2),
(3) 利用导数判断函数的单调性,然后再利用单调性及数列知识证明即可
解析试题分析:(1)
时,
取得极值,
故
解得
经检验a=1符合题意.
(2)由a=1知
由
,得
令
则
在区间
上恰有两个不同的实数根等价于
在区间
上恰有两个不同的实数根.
当
时,
,于是
在
上单调递增;
当
时,
,于是
在
上单调递减.
依题意有
,
解得,
(3)
的定义域为
,由(1)知
,
令
得,x=0或
(舍去),
当
时,
,
单调递增;
当
时,
,
单调递减.
为
在
上的最大值.
,故
(当且仅当x=0时,等号成立)
对任意正整数n,取
得,
.
故
.
考点:本题考查了导数的运用
点评:导数本身是个解决问题的工具,是高考必考内容之一,高考往往结合函数甚至是实际问题考查导数的应用,求单调、最值、完成证明等,请注意归纳常规方法和常见注意点
科目:高中数学 来源: 题型:解答题
已知函数
,
,
.![]()
(1)若
在
存在极值,求
的取值范围;
(2)若
,问是否存在与曲线
和
都相切的直线?若存在,判断有几条?并求出公切线方程,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
函数
;![]()
(1)若
在
处取极值,求
的值;
(2)设直线
和
将平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域(不包括边界),若
图象恰好位于其中一个区域,试判断其所在区域并求出相应的
的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com