已知函数,其中为实数.
(Ⅰ) 若在处取得的极值为,求的值;
(Ⅱ)若在区间上为减函数,且,求的取值范围.
科目:高中数学 来源: 题型:解答题
已知函数
(Ⅰ)若,求函数的极小值;
(Ⅱ)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知实数a满足1<a≤2,设函数f (x)=x3-x2+a x.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,
求证:g(x)的极大值小于或等于10.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数在处取得极值.
(1)求实数的值;
(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围;
(3)证明:对任意的正整数,不等式都成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,,其中是的导函数.
(1)对满足的一切的值,都有,求实数的取值范围;
(2)设,当实数在什么范围内变化时,函数的图象与直线只有一个公共点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数和“伪二次函数” .
(Ⅰ)证明:只要,无论取何值,函数在定义域内不可能总为增函数;
(Ⅱ)在同一函数图像上任意取不同两点A(),B(),线段AB中点为C(),记直线AB的斜率为k.
(1)对于二次函数,求证;
(2)对于“伪二次函数” ,是否有(1)同样的性质?证明你的结论。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数 .
(Ⅰ)若曲线y=f(x)在(1,f(1))处的切线与直线x+y+1=0平行,求a的值;
(Ⅱ)若a>0,函数y=f(x)在区间(a,a 2-3)上存在极值,求a的取值范围;
(Ⅲ)若a>2,求证:函数y=f(x)在(0,2)上恰有一个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数 .
(Ⅰ)若a>0,函数y=f(x)在区间(a,a 2-3)上存在极值,求a的取值范围;
(Ⅱ)若a>2,求证:函数y=f(x)在(0,2)上恰有一个零点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com