精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-x-a有两个不同的零点,求实数a的取值范围.
考点:函数零点的判定定理
专题:函数的性质及应用
分析:令g(x)=lnx,h(x)=x+a,将零点问题转化为交点问题,分别画出图象,先求出直线y=x+a,与曲线y=lnx相切时a的值,即而到到图象有两个交点时a的范围.
解答: 解:函数f(x)=lnx-x-a有两个不同的零点,
∴f(x)=lnx-x-a=0有两个不同的根,
∴lnx=x+a,
令g(x)=lnx,h(x)=x+a,
在同一坐标系中画出两个函数的图象,如图,
当直线y=x+a,与曲线y=lnx相切时,设切点为(x0,x0+a),
∴k=1=g′(x0)=
1
x0

∴x0=1,
∴g(x0)=0=1+a,
∴a=-1,
故当a<-1函数g(x),h(x)的图象有两个不同的交点,
实数a的取值范围为(-∞,-1)
点评:本题考察了函数的零点问题,渗透了转化思想,关键是求出直线和曲线相切时参数的值,考查数形结合思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点都在椭圆
x2
20
+
y2
16
=1上,点A的坐标为(0,4),若△ABC的重心是椭圆的右焦点,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出数对(x,y)的概率为(  )
A、
1
4
B、
1
2
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若P(x,y)是椭圆
x2
12
+
y2
4
=1上的一个动点,求xy的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数f(x)=(m-1)x2+2mx+3是定义在[-2a,3-a]上的偶函数,则f(x)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在(-∞,0]上满足:当x1,x2∈(-∞,0]且x1≠x2时,总有
x1-x2
f(x1)-f(x2)
<0
,则不等式f(x-1)<f(x)的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在正实数集R+上的减函数f(x)满足:
①f(
1
2
)=1;
②对任意正实数x,y都有f(xy)=f(x)+f(y).
(1)若f(x)=-2,求x的值;
(2)求不等式f(2x)+f(5-2x)≥-2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知sin2A+sin2B=sin2C+sinAsinB.
(1)求角C;
(Ⅱ)若c=4,求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲:动点P到两定点A,B的距离之和为|PA|+|PB|=2a(a>0且a为常数);乙:点P的轨迹是椭圆,且A,B是椭圆的两个焦点,甲是乙的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案