精英家教网 > 高中数学 > 题目详情

如图,已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<)图像上一个最高点坐标为(2,2),这个最高点到相邻最低点的图像与x轴交于点(5,0).

(1)求f(x)的解析式;
(2)是否存在正整数m,使得将函数f(x)的图像向右平移m个单位后得到一个偶函数的图像?若存在,求m的最小值;若不存在,请说明理由.

(1)f(x)=2sin
(2)m的最小值为4.

解析试题分析:解:(1)由题意知A=2=3,
∴T=12,∴ω=
∴f(x)=2sin
∵图像过(2,2),∴2=2sin
∴sin=1,
+φ=,∴φ=
∴f(x)=2sin.     6分
(2)假设存在m,则有
f(x-m)=2sin
=2cos
=2cos
∵f(x-m)为偶函数,
m=kπ,k∈Z
∴m=6k-2,∴k=1时m=4.
∴存在m,m的最小值为4.     13分
考点:三角函数的图象与解析式
点评:主要是考查了三角函数的解析式以及性质的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,处的切线方程为
(Ⅰ)求的单调区间与极值;
(Ⅱ)求的解析式;
(III)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且处的切线方程为.
(1)求的解析式;
(2)证明:当时,恒有
(3)证明:若,且,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

, 已知函数 
(Ⅰ) 证明在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;
(Ⅱ) 设曲线在点处的切线相互平行, 且 证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若在实数集R上单调递增,求的范围;
(Ⅱ)是否存在实数使上单调递减.若存在求出的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数.
(I)求f(x)的极小值和极大值;
(II)当曲线y = f(x)的切线的斜率为负数时,求在x轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(e为自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求曲线y=x2,直线y=x,y=3x围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-x3x2-2x(a∈R).
(1)当a=3时,求函数f(x)的单调区间;
(2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围;
(3)若过点可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.

查看答案和解析>>

同步练习册答案