【题目】某地棚户区改造建筑平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似为圆面,该圆面的内接四边形
是原棚户区建筑用地,测量可知边界
万米,
万米,
万米.
(1)请计算原棚户区建筑用地
的面积及
的长;
(2)因地理条件的限制,边界
不能更改,而边界
可以调整,为了提高棚户区建筑用地的利用率,请在圆弧
上设计一点
,使得棚户区改造后的新建筑用地
的面积最大,并求出最大值.
![]()
【答案】(1)
万米.
万平方米.
(2) 所求面积的最大值为
万平方米,此时点
为弧ABC的中点.
【解析】试题分析:(1)利用圆内接四边形得到对角互补,再利用余弦定理求出相关边长,再利用三角形的面积公式和分割法进行求解 ;(2)利用余弦定理和基本不等式进行求解.
试题解析:(1)根据题意知,四边形ABCD内接于圆,∴∠ABC+∠ADC=180°.
在△ABC中,由余弦定理,得AC2=AB2+BC2-2AB·BC·cos∠ABC,
即AC2=42+62-2×4×6×cos∠ABC.
在△ADC中,由余弦定理,得
AC2=AD2+DC2-2AD·DC·cos∠ADC,即AC2=42+22-2×4×2×cos∠ADC.
又cos∠ABC=-cos∠ADC,
∴cos∠ABC=
,AC2=28,即AC=2
万米,
又∠ABC∈(0,π),∴∠ABC=
.
∴S四边形ABCD=S△ABC+S△ADC=
×4×6×sin
+
×2×4×sin
=8
(平方万米).
(2)由题意知,S四边形APCD=S△ADC+S△APC,
且S△ADC=
AD·CD·sin
=2
(平方万米).
设AP=x,CP=y,则S△APC=
xysin
=
xy.
在△APC中,由余弦定理,得AC2=x2+y2-2xy·cos
=x2+y2-xy=28,
又x2+y2-xy≥2xy-xy=xy,
当且仅当x=y时取等号,∴xy≤28.
∴S四边形APCD=2
+
xy≤2
+
×28=9
(平方万米),
故所求面积的最大值为9
平方万米,此时点P为
的中点.
科目:高中数学 来源: 题型:
【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租时间不超过两小时免费,超过两个小时的部分每小时收费2元(不足1小时的部分按 1小时计算).有甲、乙两人独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为
;两小时以上且不超过三小时还车的概率分别为
;两人租车时间都不会超过四小时.
(1)求甲、乙两人所付租车费用相同的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量
,求
的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)分析,你认为选派哪位学生参加合适?请说明理由
参考公式:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱台ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6 ![]()
(1)求证:BC1⊥平面AA1C1C
(2)点D是B1C1的中点,求二面角A1﹣BD﹣B1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊有一著名的尺规作图题“倍立方问题”:求作一个正方体,使它的体积等于已知立方体体积的2倍,倍立方问题可以利用抛物线(可尺规作图)来解决,首先作一个通径为
(其中正数
为原立方体的棱长)的抛物线
,如图,再作一个顶点与抛物线
顶点
重合而对称轴垂直的抛物线
,且与
交于不同于点
的一点
,自点
向抛物线
的对称轴作垂线,垂足为
,可使以
为棱长的立方体的体积为原立方体的2倍.
(1)建立适当的平面直角坐标系,求抛物线
的标准方程;
(2)为使以
为棱长的立方体的体积为原立方体的2倍,求抛物线
的标准方程(只须以一个开口方向为例).
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上。”这就是著名的欧拉线定理,在
中,
分别是外心、垂心和重心,
为
边的中点,下列四个结论:(1)
;(2)
;(3)
;(4)
正确的个数为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,点
在直线
上.数列
满足
且
,前9项和为153.
(1)求数列
、
的通项公式;
(2)设
,数列
的前
项和为
,求
及使不等式
对一切
都成立的最小正整数
的值;
(3)设
,问是否存在
,使得
成立?若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com