【题目】定义在区间D上的函数f(x)和g(x),如果对任意x∈D,都有|f(x)﹣g(x)|≤1成立,则称f(x)在区间D上可被g(x)替代,D称为“替代区间”.给出以下问题:
①f(x)=x2+1在区间(﹣∞,+∞)上可被g(x)=x2+ 替代;
②如果f(x)=lnx在区间[1,e]可被g(x)=x﹣b替代,则﹣2≤b≤2;
③设f(x)=lg(ax2+x)(x∈D1),g(x)=sinx(x∈D1),则存在实数a(a≠0)及区间D1 , D2 , 使得f(x)在区间D1∩D2上被g(x)替代.
其中真命题是( )
A.①②③
B.②③
C.①
D.①②
【答案】C
【解析】解:在①中,∵f(x)=x2+1,g(x)=x2+ ,
∴对任意x∈(﹣∞,+∞),都有|f(x)﹣g(x)|=|1﹣ |= ≤1成立,
∴f(x)=x2+1在区间(﹣∞,+∞)上可被g(x)=x2+ 替代,故①正确;
在②中,由题意知:|f(x)﹣g(x)|=|lnx﹣x+b|≤1在x∈[1,e]上恒成立;设h(x)=lnx﹣x+b,则h′(x)= ,
∵x∈[1,e],∴h′(x)≤0,∴h(x)在[1,e]上单调递减,
h(1)=b﹣1,h(e)=1﹣e+b,
1﹣e+b≤h(x)≤b﹣1,又﹣1≤h(x)≤1,
∴ ,解得e﹣2≤b≤2,故②错误;
在③中,若a>0,解ax2+x>0,得x<﹣ 或x>0,
可取D1=(0,+∞),D2=R,∴D1∩D2=(0,+∞),
可取x=π,则|f(x)﹣g(x)|=aπ2+π,
∴不存在实数a(a>0),使得f(x)在区间D1∩D2 上被g(x)替代;
若a<0,解ax2+x>0得,x<0,或x>﹣ ,
∴可取D1=(﹣∞,0),D2=R,∴D1∩D2=(﹣∞,0),
取x=﹣π,则|f(﹣π)﹣g(﹣π)|=|aπ2﹣π|>1,
∴不存在实数a(a<0),使得f(x)在区间D1∩D2 上被g(x)替代.
综上得,不存在实数a(a≠0),使得f(x)在区间D1∩D2 上被g(x)替代,故③错误.
故选:C.
【考点精析】关于本题考查的函数的值,需要了解函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知,命题方程表示焦点在轴上的椭圆,命题方程表示双曲线.
(1)若命题是真命题,求实数的范围;
(2)若命题“或”为真命题,“且”是假命题,求实数的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}和{bn}的项数均为m,则将数列{an}和{bn}的距离定义为 |ai﹣bi|.
(1)给出数列1,3,5,6和数列2,3,10,7的距离;
(2)设A为满足递推关系an+1= 的所有数列{an}的集合,{bn}和{cn}为A中的两个元素,且项数均为m,若b1=2,c1=3,{bn}和{cn}的距离小于2016,求m的最大值;
(3)记S是所有7项数列{an|1≤n≤7,an=0或1}的集合,TS,且T中任何两个元素的距离大于或等于3,证明:T中的元素个数小于或等于16.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.
记表示台机器在三年使用期内需更换的易损零件数,表示台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.
(1)若,求与的函数解析式;
(2)若要求 “需更换的易损零件数不大于”的频率不小于,求的最小值;
(3)假设这台机器在购机的同时每台都购买个易损零件,或每台都购买个易损零件,分别计算这台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买台机器的同时应购买个还是个易损零件?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:
态度 | 应该取消 | 应该保留 | 无所谓 |
在校学生 | 2100人 | 120人 | y人 |
社会人士 | 600人 | x人 | z人 |
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以直角坐标系xOy的原点为极点,x轴的非负半轴为极轴建立极坐标系,且两坐标系相同的长度单位.已知点N的极坐标为( , ),M是曲线C1:ρ=1上任意一点,点G满足 ,设点G的轨迹为曲线C2 .
(1)求曲线C2的直角坐标方程;
(2)若过点P(2,0)的直线l的参数方程为 (t为参数),且直线l与曲线C2交于A,B两点,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的编号为003.这600名学生分住在3个营区,从001到300住在第1营区,从301到495住在第2营区,从496到600住在第3营区,则3个营区被抽中的人数依次为( )
A. 26,16,8 B. 25,16,9
C. 25,17,8 D. 24,17,9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.则获得复赛资格的人数为( )
A. 520 B. 540 C. 620 D. 640
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com