精英家教网 > 高中数学 > 题目详情

【题目】以平面直角坐标系的原点O为极点,x轴非负半轴为极轴,并在两种坐标系中取相同的长度单位,建立极坐标系.曲线的极坐标方程为,曲线的参数方程为,(为参数).

1)求曲线的直角坐标方程及的普通方程;

2)已知点PQ为曲线与曲线的交点,W为参数方程(为参数)曲线上一点,求点W到直线的距离d的最大值.

【答案】1;(2.

【解析】

1)由,则,利用极坐标公式,转化为的直角坐标方程,曲线消参得到的普通方程;

2)由(1)联立方程,求出交点,再求出直线的方程,设,将点W到直线的距离表示出来,再由辅助角公式化简求出最大值.

1)曲线,所以;所以.

曲线(为参数),则

所以.

综上,曲线的直角坐标方程为的普通方程为.

2)解,解得,

又因为,所以直线的方程为

所以().

即点W到直线的距离d的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数.

(Ⅰ)当时,求的解集;

(Ⅱ)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小赵和小王约定在早上之间到某公交站搭乘公交车去上学,已知在这段时间内,共有班公交车到达该站,到站的时间分别为,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代劳动人民在筑城、筑堤、挖沟、挖渠、建仓、建囤等工程中,积累了丰富的经验,总结出了一套有关体积、容积计算的方法,这些方法以实际问题的形式被收入我国古代数学名著《九章算术》中.《九章算术商功》:斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.下图解释了这段话中由一个长方体,得到堑堵阳马鳖臑的过程.已知如图堑堵的棱长,则鳖臑的外接球的体积为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设你有一笔资金,现有三种投资方案,这三种方案的回报如下:

方案一:每天回报40元;

方案二:第一天回报10元,以后每天比前一天多回报10元;

方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.

现打算投资10天,三种投资方案的总收益分别为,则( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

4

19

线上学习时间不足5小时

合计

45

1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;

2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);

②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.

(下面的临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点S( -20) ,T(20),动点P为平面上一个动点,且直线SPTP的斜率之积为.

1)求动点P的轨迹E的方程;

2)设点B为轨迹Ey轴正半轴的交点,是否存在直线l,使得l交轨迹EMN两点,且F(10)恰是△BMN的垂心?若存在,求l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一带一路丝绸之路经济带“21世纪海上丝绸之路的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.2013年以来,一带一路建设成果显著下图是2013-2017年,我国对一带一路沿线国家进出口情况统计图,下列描述正确的是( .

A.这五年,2013年出口额最少

B.这五年,出口总额比进口总额多

C.这五年,出口增速前四年逐年下降

D.这五年,2017年进口增速最快

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为(

A.20°B.40°

C.50°D.90°

查看答案和解析>>

同步练习册答案