精英家教网 > 高中数学 > 题目详情
9.已知不等式x2+(m+1)x+m2>0的解集为R,则实数m的取值范围为(-∞,-$\frac{1}{3}$)∪(1,+∞).

分析 不等式恒成立,需△<0,解出即可.

解答 解:∵x2+(m+1)x+m2>0的解集为R,
∴△=(m+1)2-4m2<0,
解得:m<-$\frac{1}{3}$,或m>1.
故答案为:(-∞,-$\frac{1}{3}$)∪(1,+∞).

点评 本题考查函数恒成立问题、一元二次不等式的解法,考查转化思想、考查学生解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知m>0且|x+1|+|2x-1|≥m恒成立,a,b,c∈R满足a2+2b2+3c2=m.则a+2b+3c的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=$\left\{\begin{array}{l}(4-\frac{a}{2})x+2,x≤1\\ ax,x>1\end{array}$是R上的单调递增函数,则实数a的取值范围为(  )
A.(1,+∞)B.(1,8)C.(4,8)D.[4,8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{a}$=(cos 2α,sin α),向量$\overrightarrow{b}$=(1,2sin α-1),α∈($\frac{π}{2}$,π),$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{2}{5}$.
(1)求sin α的值
(2)求$\frac{5\sqrt{2}sin2α-4cos(α+\frac{π}{4})}{2co{s}^{2}\frac{α}{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=f(x)的图象与g(x)=logax(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过(4,2)点.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x-1)>f(5-x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$cos(θ+\frac{π}{4})=\frac{{\sqrt{10}}}{10},θ∈(0,\frac{π}{2})$,则$sin(2θ-\frac{π}{3})$=$\frac{4-3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边分别为a,b,c,满足:c•cosBsinC+($\sqrt{3}$a+csinB)cosC=0.
(Ⅰ)求C的大小;
(Ⅱ)若c=$\sqrt{3}$,求a+b的最大值,并求取得最大值时角A,B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.把函数y=sin(2x-$\frac{π}{4}$)的图象向右平移$\frac{π}{8}$个单位,再向下平移2个单位所得函数的解析式为(  )
A.y=cos2x-2B.y=-cos2x-2C.y=sin2x-2D.y=-cos2x+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若集合A={x|1<x≤$\sqrt{3}$},B={x|0<x≤1},则A∪B=(  )
A.{x|x>0}B.{x|x≤$\sqrt{3}$}C.{x|0≤x≤$\sqrt{3}$}D.{x|0<x≤$\sqrt{3}$}

查看答案和解析>>

同步练习册答案