精英家教网 > 高中数学 > 题目详情
18.把函数y=sin(2x-$\frac{π}{4}$)的图象向右平移$\frac{π}{8}$个单位,再向下平移2个单位所得函数的解析式为(  )
A.y=cos2x-2B.y=-cos2x-2C.y=sin2x-2D.y=-cos2x+2

分析 由条件利用诱导公式、函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:把函数y=sin(2x-$\frac{π}{4}$)的图象向右平移$\frac{π}{8}$个单位,可得函数y=sin[2(x-$\frac{π}{8}$)-$\frac{π}{4}$]=sin(2x-$\frac{π}{2}$)=-cos2x 的图象;
再向下平移2个单位,可得函数的图象对应的解析式为y=-cos2x-2,
故选:B.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数F(x)=ex-1,G(x)=ax2+bx,其中a,b∈R,e是自然对数的底数.
(1)当a=0时,y=G(x)为曲线y=F(x)的切线,求b的值;
(2)若f(x)=F(x)-G(x),f(1)=0,且函数f(x)在区间(0,1)内有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知不等式x2+(m+1)x+m2>0的解集为R,则实数m的取值范围为(-∞,-$\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$的值域是{2,-2,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知偶函数f(x):Z$\stackrel{f}{→}$Z,且f(x)满足:f(1)=1,f(2015)≠1,对任意整数a,b都有f(a+b)≤max{f(a),f(b)},其中max(x,y)=$\left\{\begin{array}{l}{x,x≥y}\\{y,x<y}\end{array}\right.$,则f(2016)的值为(  )
A.0B.1C.2015D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法错误的是(  )
A.将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变
B.回归直线$\hat y=\hat bx+\hat a$必过点$(\overline x,\overline y)$
C.在一个2×2列联表中,由计算得随机变量K2的观测值k=13.079,则可以在犯错误的概率不超过0.001的前提下,认为这两个变量间有关系
D.设有一个线性回归方程为$\hat y=3-5\hat x$,则变量x增加一个单位时,y平均增加5个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若α,β为两个不同的平面,m,n为不同直线,下列推理:
①若α⊥β,m⊥α,n⊥β,则直线m⊥n;
②若直线m∥平面α,直线n⊥直线m,则直线n⊥平面α;
③若直线m∥n,m⊥α,n?β,则平面α⊥平面β;
④若平面α∥平面β,直线m⊥平面β,n?α,则直线m⊥直线n;
其中正确说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数(1-ai)(2+i)是纯虚数(i是虚数单位,a是实数),则a=(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}是公比为d的等比数列,且a1与a2的算术平均数恰好是a3
(1)求d;
(2)设{bn}是以2为首项,d为公差的递减等差数列,其前n项和为Sn,比较Sn与bn的大小.

查看答案和解析>>

同步练习册答案