精英家教网 > 高中数学 > 题目详情
9.设复数z满足z•(2+i)=10-5i(i为虚数单位),则z的共轭复数$\overline{z}$为(  )
A.-3+4iB.-3-4iC.3+4iD.3-4i

分析 由z•(2+i)=10-5i,得z=$\frac{10-5i}{2+i}$,再由复数代数形式的乘除运算化简复数z,则z的共轭复数$\overline{z}$可求.

解答 解:由z•(2+i)=10-5i,
得$z=\frac{10-5i}{2+i}=\frac{(10-5i)(2-i)}{(2+i)(2-i)}=\frac{15-20i}{5}$=3-4i,
则z的共轭复数$\overline{z}$=3+4i.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了共轭复数的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若复数z满足(3-z)•i=2(i为虚数单位),则z=3+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若(2x-1)2016=a0+a1x+a2x2+…+a2016x2016,则$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=a|x|-3a-1,若命题?x∈[-1,1],使f(x)≠0是假命题,则实数a的取值范围为(  )
A.$(-∞,\;-\frac{1}{2}]$B.$(-∞,\;-\frac{1}{2}]∪(0,\;+∞)$C.$[-\frac{1}{2},\;-\frac{1}{3}]$D.$(-∞,\;-\frac{1}{3}]∪$$[-\frac{1}{2},\;0)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow m=(sinx,cosx),\overrightarrow n=(cosx,-\sqrt{3}cos(π+x))$(x∈R)函数f(x)=$\overrightarrow m•\overrightarrow n$
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函数y=f(x)的图象向右平移$\frac{π}{4}$个单位,再向上平移$\frac{\sqrt{3}}{2}$个单位,得到函数y=g(x)的图象,求y=g(x)在[0,$\frac{π}{4}$]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),定义椭圆C的“相关圆”方程为x2+y2=$\frac{{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$.若抛物线y2=4x的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和两个焦点构成直角三角形
(Ⅰ)求椭圆C的方程和“相关圆”E的方程;
(Ⅱ)过“相关圆”E上任意一点P的直线l:y=kx+m与椭圆交于A,B两点,O为坐标原点,若OA⊥OB,证明原点O到直线AB的距离为定值,并求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,A为椭圆上异于顶点的一点,点P满足$\overrightarrow{OP}$=2$\overrightarrow{AO}$.
(1)若点P的坐标为(2,$\sqrt{2}$),求椭圆的方程;
(2)设过点P的一条直线交椭圆于B,C两点,且$\overrightarrow{BP}$=m$\overrightarrow{BC}$,直线OA,OB的斜率之积为-$\frac{1}{2}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=(sinx-2)(cosx-2)的值域是(  )
A.[$\frac{9}{2}$-2$\sqrt{2}$,$\frac{9}{2}$+2$\sqrt{2}$]B.[$\frac{3}{2}$,$\frac{9}{2}$+2$\sqrt{2}$]C.[$\frac{3}{2}$,+∞)D.[$\frac{9}{2}$-2$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设各项为正数等比数列{an}的前n项和为Sn,已知S1=2,S3=14.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an•log2an,求{bn}的通项公式;
(3)求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案