分析 (1)设等比数列{an}的公比为q,从而可得S3=a1(1+q+q2)=14,从而解得;
(2)代入an=2n化简即可;
(3)利用错位相减法求和即可.
解答 解:(1)设等比数列{an}的公比为q,
则a1=S1=2,S3=a1(1+q+q2)=14,
解得,q=2或q=-3(舍去);
故an=2•2n-1=2n;
(2)∵an=2n,
∴bn=an•log2an=n•2n;
(3)Tn=2+2•22+3•23+4•24+5•25+…+n•2n,
2Tn=22+2•23+3•24+4•25+5•26+…+n•2n+1,
两式作差可得,
Tn=-2-22-23-24-25-…-2n+n•2n+1
=-$\frac{2(1-{2}^{n})}{1-2}$+n•2n+1
=(n-1)2n+1+2.
点评 本题考查了等比数列的性质的应用及错位相减法的应用.
科目:高中数学 来源: 题型:选择题
| A. | -3+4i | B. | -3-4i | C. | 3+4i | D. | 3-4i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 14 | C. | 12 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 37${C}_{12}^{7}$ | B. | 38${C}_{12}^{8}$ | C. | -33${C}_{12}^{3}$ | D. | -37${C}_{12}^{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com