分析 由条件先判断函数的单调性,利用奇偶性和单调性的性质将不等式转化f(x)min≤t2-2at-1成立,构造函数g(a)即可得到结论.
解答 解:∵函数f(x)在[-1,1]上单调递增,f(1)=2,
∴f(x)的最小值为f(-1)=-f(1)=-2,最大值为f(1)=2,
若$\frac{1}{2}$f(x)≤m2+2am+1对所有x∈[-1,1],a∈[-1,1]恒成立,
即m2+2am+1≥$\frac{1}{2}×2$=1对所有a∈[-1,1]恒成立,
∴m2+2am≥0对所有a∈[-1,1]恒成立,
设g(a)=m2+2am=2ma+m2,
则满足$\left\{\begin{array}{l}{g(1)={m}^{2}+2m≥0}\\{g(-1)={m}^{2}-2m≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{m≥0或m≤-2}\\{m≥2或m≤0}\end{array}\right.$,
∴m≥2或m≤-2或m=0.
故答案为:m≥2或m≤-2或m=0.
点评 本题主要考查不等式恒成立问题,根据条件转化为函数最值恒成立,以及转化为以a为变量的函数是解决本题的关键.综合考查函数的性质.
科目:高中数学 来源: 题型:选择题
| A. | $(-∞,\;-\frac{1}{2}]$ | B. | $(-∞,\;-\frac{1}{2}]∪(0,\;+∞)$ | C. | $[-\frac{1}{2},\;-\frac{1}{3}]$ | D. | $(-∞,\;-\frac{1}{3}]∪$$[-\frac{1}{2},\;0)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{9}{2}$-2$\sqrt{2}$,$\frac{9}{2}$+2$\sqrt{2}$] | B. | [$\frac{3}{2}$,$\frac{9}{2}$+2$\sqrt{2}$] | C. | [$\frac{3}{2}$,+∞) | D. | [$\frac{9}{2}$-2$\sqrt{2}$,$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{2}{3}$,2] | B. | (0,2] | C. | ($\frac{1}{2}$,2] | D. | (1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 分数 | [0,20) | [20,40) | [40,60) | [60,80) | [80,100) |
| 人数 | 2 | 1 | 8 | 36 | 13 |
| A. | 0.10 | B. | 0.15 | C. | 0.35 | D. | 0.60 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com