分析 (1)取AD的中点G,连接HE,HG,GC,证明四边形EHGC是平行四边形,推出HE∥GC,即可证明HE∥平面ABCD.
(2)法一:如图,取PB的中点M,连接AC,DB交于点F,连接ME,MF,作FK⊥PB于点K,∠AKF是二面角A-PB-D的平面角,通过Rt△PDB~Rt△FKB,求出$∠AKF=\frac{π}{3}$,得到二面角A-PB-E的大小就是二面角A-PB-D的大小与直二面角D-PB-E的大小之和,求解二面角A-PB-E的大小.
法二:DA,DC,DP两两互相垂直,建立空间直角坐标系D-xyz如图所示,设PA的中点为N,连接DN,求出平面PAB的一个法向量,平面PBE的法向量,通过向量的数量积求解,二面角A-PB-E的大小.
解答 (本小题满分12分![]()
解:(1)∵底面ABCD是平行四边形,AD=AB=2,$\overrightarrow{AB}•\overrightarrow{AD}=0$,
∴底面ABCD是边长为2的正方形,取AD的中点G,
连接HE,HG,GC,根据题意得HG=EC=1,且HG∥EC∥PD,
则四边形EHGC是平行四边形,…(3分)
所以HE∥GC,HE?平面ABCD,GC?平面ABCD,
故HE∥平面ABCD…(5分)
(2)法一:如图,![]()
取PB的中点M,连接AC,DB交于点F,连接ME,MF,
作FK⊥PB于点K,容易得到∠AKF是二面角A-PB-D的平面角,…(7分)
$AF=\frac{1}{2}AC=\sqrt{2}$,Rt△PDB~Rt△FKB,易得$FK=\frac{{\sqrt{6}}}{3}$,
从而$tan∠AKF=\frac{AF}{KF}=\sqrt{3}$,所以$∠AKF=\frac{π}{3}$…(8分)
由于点M是PB的中点,所以MF是△PDB的中位线,MF∥PD,且$MF=\frac{1}{2}PD$,
MF=EC,且MF∥EC,故四边形MFCE是平行四边形,则ME∥AC,
又AC⊥平面PDB,则ME⊥平面PDB,ME?平面PBE,
所以平面PBE⊥平面PDB,
所以二面角A-PB-E的大小就是二面角A-PB-D的大小与直二面角D-PB-E的大小之和…(11分)
故二面角A-PB-E的大小为$\frac{π}{3}+\frac{π}{2}=\frac{5π}{6}$…(12分)
法二:由(1)知,DA,DC,DP两两互相垂直,建立空间直角坐标系D-xyz如图所示,
设PA的中点为N,连接DN,则D(0,0,0),A(2,0,0),B(2,2,0),E(0,2,1),P(0,0,2),N(1,0,1),易知DN⊥PA,DN⊥AB,所以DN⊥平面PAB,
所以平面PAB的一个法向量为$\overrightarrow{DN}=\overrightarrow n=(1,0,1)$…(7分)
设平面PBE的法向量为$\overrightarrow m=(x,y,z)$,因为$\overrightarrow{BE}=(-2,01)$,$\overrightarrow{BP}=(-2,-2,2)$,
由$\left\{\begin{array}{l}\overrightarrow m•\overrightarrow{BE}=0\\ \overrightarrow m•\overrightarrow{BP}=0\end{array}\right.$得$\left\{\begin{array}{l}2x=z\\ x+y=z\end{array}\right.$,取z=2,则x=1,y=1,
所以$\overrightarrow m=(1,1,2)$为平面PBE的一个法向量. (9分)
所以$cos<\overrightarrow m,\overrightarrow n>=\frac{\overrightarrow m•\overrightarrow n}{{|{\overrightarrow m}|•|{\overrightarrow n}|}}=\frac{3}{{\sqrt{2}×\sqrt{6}}}=\frac{{\sqrt{3}}}{2}$
从图形可知,二面角A-PB-E是钝角,所以二面角A-PB-E的大小为$\frac{5π}{6}$…(12分![]()
点评 本题考查二面角的平面镜的求法,直线与平面平行于垂直的判定与性质的应用,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{5}}{3}$ | C. | $\frac{2}{3}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com