9£®ÒÑÖªÊýÁÐ{an}µÄͨÏîΪan£¬Ç°nÏîºÍΪSn£¬ÇÒanÊÇSnÓë2µÄµÈ²îÊýÁУ¬ÊýÁÐ{bn}ÖУ¬b1=1£¬µãP£¨bn£¬bn+1£©ÔÚÖ±Ïßx-y+2=0ÉÏ£®
£¨1£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨2£©Çó$\frac{{b}_{1}}{{a}_{1}}$+$\frac{{b}_{2}}{{a}_{2}}$+¡­+$\frac{{b}_{n}}{{a}_{n}}$µÄºÍ£»
£¨3£©ÉèÊýÁÐ{bn}µÄǰnÏîºÍΪBn£¬ÊԱȽÏ$\frac{1}{{B}_{1}}$+$\frac{1}{{B}_{2}}$+¡­+$\frac{1}{{B}_{n}}$Óë2µÄ´óС£¨·ÅËõ·¨£©

·ÖÎö £¨1£©ÀûÓÃÒÑÖªÌõ¼þµÃ³öÊýÁеÄͨÏîºÍǰnÏîºÍÖ®¼äµÄµÈʽ¹ØÏµ£¬ÔÙ½áºÏ¶þÕß¼äµÄ»ù±¾¹ØÏµ£¬µÃ³öÊýÁÐ{an}µÄͨÏʽ£¬¸ù¾Ý{bn}µÄÏàÁÚÁ½ÏîÂú×ãµÄ¹ØÏµµÃ³öµÝÍÆ¹ØÏµ£¬½øÒ»²½Çó³öÆäͨÏʽ£»
£¨2£©ÀûÓôíλÏà¼õ·¨½øÐÐÇó½â¼´¿É£»
£¨3£©ÀûÓ÷ÅËõ·¨×ª»¯¸÷ÏîÊǽâ¾ö¸ÃÎÊÌâµÄ¹Ø¼ü£¬½«ËùÇóµÄ¸÷Ïî·ÅËõת»¯ÎªÄÜÇóºÍµÄÒ»¸öÊýÁеĸ÷Ïî¹À¼ÆÆäºÍ£¬½ø¶ø´ïµ½±È½Ï´óСµÄÄ¿µÄ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ2an=Sn+2£¬
µ±n=1ʱ£¬a1=2£¬
µ±n¡Ý2ʱ£¬ÓÐ2an-1=sn-1+2£¬Á½Ê½Ïà¼õ£¬ÕûÀíµÃan=2an-1£¬
¼´ÊýÁÐ{an}ÊÇÒÔ2ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬¹Êan=2n£®
ÓɵãP£¨bn£¬bn+1£©ÔÚÖ±Ïßx-y+2=0ÉÏ£¬µÃ³öbn-bn+1+2=0£¬¼´bn+1-bn=2£¬
¼´ÊýÁÐ{bn}ÊÇÒÔ1ΪÊ×Ï2Ϊ¹«²îµÄµÈ²îÊýÁУ¬
Òò´Ëbn=2n-1£»
£¨2£©ÓÉ£¨1£©¿ÉÖª$\frac{{b}_{n}}{{a}_{n}}$=$\frac{2n-1}{{2}^{n+1}}$£¬
¼ÇTn=$\frac{{b}_{1}}{{a}_{1}}$+$\frac{{b}_{2}}{{a}_{2}}$+¡­+$\frac{{b}_{n}}{{a}_{n}}$£¬
ÔòTn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+¡­+$\frac{2n-1}{{2}^{n}}$          ¢Ù
¡à$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+$\frac{5}{{2}^{4}}$+¡­+$\frac{2n-1}{{2}^{n+1}}$       ¢Ú
¢Ù-¢ÚµÃ $\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+$\frac{2}{{2}^{3}}$+¡­+$\frac{2}{{2}^{n}}$-$\frac{2n-1}{{2}^{n+1}}$£¬
¡à$\frac{{b}_{1}}{{a}_{1}}$+$\frac{{b}_{2}}{{a}_{2}}$+¡­+$\frac{{b}_{n}}{{a}_{n}}$=3-$\frac{1}{{2}^{n-2}}$-$\frac{2n-1}{{2}^{n}}$£»
£¨3£©¡ßBn=1+3+5+¡­+£¨2n-1£©=n2
¡à$\frac{1}{{B}_{1}}$+$\frac{1}{{B}_{2}}$+¡­+$\frac{1}{{B}_{n}}$
=$\frac{1}{{1}^{2}}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+¡­+$\frac{1}{{n}^{2}}$
£¼1+$\frac{1}{1¡Á2}$+$\frac{1}{2¡Á3}$+¡­+$\frac{1}{£¨n-1£©¡Án}$
=1+1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+¡­+$\frac{1}{n-1}$-$\frac{1}{n}$
=2-$\frac{1}{n}$£¼2£®

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁС¢µÈ±ÈÊýÁеÄÅж¨ÎÊÌ⣬¿¼²é¸ù¾ÝÊýÁеĵÝÍÆ¹ØÏµµÃ³öÊýÁÐͨÏʽµÄ·½·¨£¬¿¼²éÊýÁеÄͨÏîÓëǰnÏîºÍÖ®¼äµÄ¹ØÏµ£¬¿¼²éÊýÁÐÇóºÍµÄ˼ÏëºÍ·½·¨£¬¿¼²é·ÅËõ·¨¹À¼Æ²»µÈʽµÄÓйØÎÊÌ⣬¿¼²éѧÉú·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦ºÍÒâʶ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªD£¨X£©=4£¬D£¨Y£©=1£¬¦ÑXY=0.6£¬ÇóD£¨X+Y£©£¬D£¨3X-2Y£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚÖ±ÈýÀâÖùABC-A¡äB¡äC¡äÖУ¬µ×ÃæÊDZ߳¤ÎªaµÄÕýÈý½ÇÐΣ¬AA¡ä=$\sqrt{3}$a£¬ÔòÖ±ÏßAB¡äÓë²àÃæAC¡äËù³É½ÇµÄÕýÇÐֵΪ$\frac{\sqrt{39}}{13}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ËıßÐÎABCDÊÇÕý·½ÐΣ¬PD¡ÍÃæABCD£¬PD¡ÎAQ£¬ÇÒAQ=AB=$\frac{1}{2}$PD£¬MΪPCÖе㣮
£¨1£©ÇóÖ¤£ºPD¡ÍQM£»
£¨2£©Çó¶þÃæ½ÇB-PQ-A´óСµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚÕýÈýÀâ×¶P-ABCÖУ¬ÈôAB=PA=a£¬Ôò²àÀâPAÓëµ×ÃæABCËù³É½ÇµÄÓàÏÒֵΪ$\frac{\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÖ±Ïßl£ºy=-x+1ÓëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÏཻÓÚA¡¢BÁ½µã£®
£¨1£©ÈôÖ±ÏßlÇ¡ºÃ¾­¹ýÍÖÔ²CµÄÒ»¸ö½¹µãF£¬ÇÒÍÖÔ²CÉϵĵ㵽FµÄ×î´ó¾àÀëΪ$\sqrt{3}$+1£¬ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£®
£¨2£©ÈôOA¡ÍOB£¨ÆäÖÐOÎª×ø±êÔ­µã£©£¬µ±ÍÖÔ²CµÄÀëÐÄÂÊe¡Ê[$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$]ʱ£¬ÇóÍÖÔ²CµÄ³¤Ö᳤µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÍÖÔ²$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$ÉÏÓÐÁ½µãP£¬Q£¬OΪԭµã£¬Á¬OP£¬OQ£¬P£¬QÖеãΪM£¬OP£¬OQµÄбÂÊÖ®»ýΪ-$\frac{1}{4}$£¬ÇóµãMµÄ¹ì¼£EµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ$\frac{4}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ1£¬E£¬F£¬M£¬N·Ö±ðÊÇA1B1£¬BC£¬C1D1£¬B1C1µÄÖе㣮
£¨1£©ÇóÖ±ÏßEFÓëMNµÄ¼Ð½Ç£»
£¨2£©ÇóÖ±ÏßMFÓëÆ½ÃæENFËù³É½ÇµÄÓàÏÒÖµ£»
£¨3£©Çó¶þÃæ½ÇN-EF-MµÄÆ½Ãæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸