分析 (1)由满足an+1=Sn+2n+1(n∈N*).可知,Sn+1-Sn=Sn+2n+1,即$\frac{{S}_{n+1}}{{2}^{n+1}}$-$\frac{{S}_{n}}{{2}^{n}}$=1.利用等差数列的通项公式即可得出.
(2)由(1)可知,$\frac{{S}_{n}}{{2}^{n}}$=1+n-1=n,即Sn=n•2n,再利用“错位相减法”与等比数列的求和公式即可得出.
解答 (1)证明:由满足an+1=Sn+2n+1(n∈N*).可知,Sn+1-Sn=Sn+2n+1,即$\frac{{S}_{n+1}}{{2}^{n+1}}$-$\frac{{S}_{n}}{{2}^{n}}$=1.
所以数列$\{\frac{{S}_{n}}{{2}^{n}}\}$是以1为首项,1为公差的等差数列.
(2)解:由(1)可知,$\frac{{S}_{n}}{{2}^{n}}$=1+n-1=n,即Sn=n•2n,
令Tn=S1+S2+…+Sn=2+2×22+3×23+…+n•2n,
2Tn=22+2×23+…+(n-1)•2n+n•2n+1,
∴-Tn=2+22+…+2n-n•2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1=(1-n)•2n+1-2,
整理得:Tn=2+(n-1)•2n+1.
点评 本题考查了等差数列与等比数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b=2,c=3 | B. | b=2,c=-1 | C. | b=-2,c=-1 | D. | b=-2,c=3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com