精英家教网 > 高中数学 > 题目详情
已知f(x)=log2(2x-x2).且关于x的方程2f(x)=kx+1有两个不相等的实根x1、x2
(1)求f(x)的定义域;
(2)求k的取值范围M;
(3)是否存在实数n,使得不等式n2+n+1>2|x1-x2|对任意的k∈M恒成立?若存在,求出n的取值范围,若不存在,请说明理由.
考点:对数函数图象与性质的综合应用
专题:函数的性质及应用
分析:(1)根据对数的定义,真数大于0,得到关于x的不等式,解得即可;
(2)代入化简得到x2+(k-2)+1=0,x∈(0,2),根据根的存在条件得到关于k的不等式组,解得即可;
(3)先求出|x1-x2|的范围,假设存在实数n,则n2+n+1≥3,解得即可.
解答: 解:(1)由题意x(2-x)>0,
即x(x-2)<0,
解得0<x<2,
即f(x)的定义域;(0,2);
(2)由题意得2f(x)=kx+1?x2+(k-2)+1=0,x∈(0,2),
令g(x)=x2+(k-2)+1,
△=(k-2)2-4>0
g(0)=1>0
g(2)=4+2k-4+1>0
0<
2-k
2
<2

∴k∈(-
1
2
,0),
∴M=(-
1
2
,0),
(3)由(2)知,|x1、x2|=
(x1+x2)2-4x1x2
=
(k-2)2-4
∈(0,
3
2
)

假设存在实数n,使得不等式n2+n+1>2|x1-x2|对任意的k∈M恒成立,
则n2+n+1≥3,解得n≤-2,或n≥1,
故存在实数n,其取值范围为:(-∞,-2]∪[1,+∞)
点评:本题主要考查了对数的定义,根的存在性,以及不等式(组)的解法,考查了转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-3x2+3,定义数列{an}满足a1=3,且an>0,an+1=
-3f(an)+9

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
1
an
,数列{bn}的前n项和为Sn,求证:Sn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某小学四年级男同学有45名,女同学有30名,老师按照分层抽样的方法组建了一个5人的课外兴趣小组.
(Ⅰ)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(an+1,1),
b
=(1,-an),
a
b
=2,设数列{an}的前n项和为Sn,且S4、S6、S9成等比数列.
(Ⅰ)求an与Sn
(Ⅱ)若bn=
Sn+156
an+1
,求数列{bn}中的最小项及取得最小项时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中a、b、c分别为角A、B、C所对的边长,已知:C=
π
3
,a+b=λc(其中λ>1)
(1)当λ=2时,证明:a=b=c;
(2)若
AC
BC
3,求边长c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d≠0,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的公差d及通项an
(2)求数列{2an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

六张卡片上分别写有数字1,2,3,3,4,5,从中任取四张排成一排,可以组成不同的四位偶数的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
4a
+
y2
a2+1
=1(a>0)的焦点在x轴上,则它的离心率的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将参数方程
x=2+sin2θ
y=sin2θ
(θ为参数)化为普通方程为
 

查看答案和解析>>

同步练习册答案