精英家教网 > 高中数学 > 题目详情

已知函数数学公式是奇函数,且数学公式
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)用定义证明函数f(x)在(0,1)上的单调性.

解:(Ⅰ)因为f(x)是奇函数,所以对定义域内的任意x,都有∴f(-x)=-f(x),
(2分)
整理得q+3x=-q+3x,所以q=0.又因为
所以,解得p=2.
故所求解析式为.(6分)
(Ⅱ)由(1)得
设0<x1<x2<1,则.(10分)
因为0<x1<x2<1,所以0<x1x2<1,x1-x2<0,1-x1x2>0,
从而得到f(x1)-f(x2)<0,即f(x1)<f(x2).
所以函数f(x)在(0,1)上是增函数.(14分)
分析:(Ⅰ)求函数f(x)的解析式可根据函数是奇函数得出等式f(-x)=-f(x),及建立方程,两者联立可求出函数的解析式.
(Ⅱ)用定义证明函数f(x)在(0,1)上的单调性,要设0<x1<x2<1,再f(x1)-f(x2)的符号,依据定义判断出结论即可.
点评:本题 考查函数奇偶性的性质,利用函数的奇偶性建立方程求参数,这是奇偶性的一个重要应用,做对本题的关键是根据定义转化出正确的方程,利用定义法证明单调性时,要注意做题格式,及判号时要严谨.
练习册系列答案
相关习题

科目:高中数学 来源:2015届云南省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本小题12分)

已知函数是奇函数,且

(1)求的值;

(2)用定义证明在区间上是减函数.

 

查看答案和解析>>

科目:高中数学 来源:2013届云南大理宾川县四中高二5月月考文科数学试卷(解析版) 题型:选择题

已知函数是奇函数,且在区间上单调递减,则上是(     )  

A. 单调递减函数,且有最小值           B. 单调递减函数,且有最大值

C. 单调递增函数,且有最小值            D. 单调递增函数,且有最大值

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省高三第一次月考数学试卷(解析版) 题型:解答题

已知函数是奇函数,且.

(1)求函数f(x)的解析式;  

(2)判断函数f(x)在上的单调性,并加以证明.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省五校高三第一次联考理科数学 题型:解答题

(本题15分)已知函数是奇函数,且图像在点 为自然对数的底数)处的切线斜率为3.

(1)   求实数的值;

(2)   若,且对任意恒成立,求的最大值;

(3)   当时,证明:

 

 

查看答案和解析>>

科目:高中数学 来源:2011--2012学年山西省第一学期高一月考数学试卷 题型:解答题

已知函数是奇函数,且满足

(Ⅰ)求实数的值;

(Ⅱ)试证明函数在区间单调递减,在区间单调递增;

(Ⅲ)是否存在实数同时满足以下两个条件:1不等式恒成立; 2方程上有解.若存在,试求出实数的取值范围,若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案