精英家教网 > 高中数学 > 题目详情
11.已知椭圆:$\frac{{x}^{2}}{2}$+y2=1,已知A(1,0).B(2,0),若过B的直线与椭圆C交于P、Q两点.
(1)求证:∠QAB+∠PAB=π;
(2)求△QPQ面积S的最大值.

分析 (1)设过B的直线方程为y=k(x-2),代入椭圆方程x2+2y2-2=0,运用韦达定理和判别式大于0,求得直线PA和QA的斜率之和,化简整理可得0,即可得证;
(2)△QPA面积S=S△PAB-S△QAB=$\frac{1}{2}$|AB|•|y1-y2|,由P,Q满足直线方程,再由韦达定理,化简整理,运用换元法和配方,由二次函数的最值求法,即可得到所求最大值.

解答 解:(1)证明:设过B的直线方程为y=k(x-2),
代入椭圆方程x2+2y2-2=0,可得
(1+2k2)x2-8k2x+8k2-2=0,
设P(x1,y1),Q(x2,y2),
△=64k4-4(1+2k2)(8k2-2)>0,可得-$\frac{\sqrt{2}}{2}$<k<$\frac{\sqrt{2}}{2}$,
x1+x2=$\frac{8{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{8{k}^{2}-2}{1+2{k}^{2}}$,
直线PA和QA的斜率之和为$\frac{{y}_{1}}{{x}_{1}-1}$+$\frac{{y}_{2}}{{x}_{2}-1}$
=$\frac{k({x}_{1}-2)}{{x}_{1}-1}$+$\frac{k({x}_{2}-2)}{{x}_{2}-1}$=k•$\frac{2{x}_{1}{x}_{2}-3({x}_{1}+{x}_{2})+4}{({x}_{1}-1)({x}_{2}-1)}$
由2x1x2-3(x1+x2)+4=$\frac{16{k}^{2}-4}{1+2{k}^{2}}$-$\frac{24{k}^{2}}{1+2{k}^{2}}$+4=$\frac{-4-8{k}^{2}}{1+2{k}^{2}}$+4=-4+4=0,
可得直线PA和QA的斜率之和为0,
即有tan∠QAB=-tan∠PAB,
则∠QAB+∠PAB=π;
(2)△QPA面积S=S△PAB-S△QAB=$\frac{1}{2}$|AB|•|y1-y2|
=$\frac{1}{2}$|k|•|x1-x2|=$\frac{1}{2}$|k|•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{1}{2}$|k|•$\sqrt{\frac{64{k}^{4}}{(1+2{k}^{2})^{2}}-\frac{4(8{k}^{2}-2)}{1+2{k}^{2}}}$=$\frac{\sqrt{2{k}^{2}-4{k}^{4}}}{1+2{k}^{2}}$,
令t=1+2k2,即有2k2=t-1,
则S=$\frac{\sqrt{t-1-(t-1)^{2}}}{t}$=$\sqrt{-\frac{2}{{t}^{2}}+\frac{3}{t}-1}$=$\sqrt{-2(\frac{1}{t}-\frac{3}{4})^{2}+\frac{1}{8}}$,
当$\frac{1}{t}$=$\frac{3}{4}$,即t=$\frac{4}{3}$,可得k=±$\frac{\sqrt{6}}{6}$∈(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),
面积S取得最大值$\frac{\sqrt{2}}{4}$.

点评 本题考查直线方程和椭圆方程联立,运用韦达定理和判别式大于0,考查直线的斜率的运用,同时考查三角形的面积的最值的求法,注意运用面积相减法,考查换元法和二次函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx,g(x)=ax2-(2a+1)x,a∈R
(1)当a=1时,求不等式f(x)•g(x)>0的解集;
(2)若a≠0,求函数F(x)=f(x)+g(x)的单调递减区间;
(3)求证:当a∈[-$\frac{3+2\sqrt{2}}{2}$,$\frac{2}{3}$]时,对于任意两个不等的实数x1,x2∈[$\frac{1}{4}$,$\frac{3}{4}$],均有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=ex(ax-1),g(x)=a(x-1),a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若有且仅有两个整数xi(i=1,2),使得f(xi)<g(xi)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,则$\frac{{b}^{2}+1}{a}$的最小值为(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,且|F1F2|=2,点P(2,$\frac{2\sqrt{5}}{5}$)在椭圆上.
(1)求椭圆C的方程;
(2)设O为坐标原点,圆O:x2+y2=a2,B1(0,-b),B2(0,b),E为椭圆C上异于顶点的任意一点,点F在圆O上,且EF⊥x轴,E与F在x轴两侧,直线EB1,EB2分别与x轴交于点C,H,记直线FG,FH的斜率分别为k1,k2,问:k1k2是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下面的伪代码输出的结果是24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x,y满足$\frac{{x}^{2}}{3}$+y2=1,则u=|3x+3y-7|的取值范围为[1,13].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦距为2.且经过点(${\frac{2}{3}$,$\frac{{2\sqrt{6}}}{3}}$).
(I)求椭圆C的方程;
(Ⅱ)若过点D(4,O)的直线l与C交于不同的两点A,B,且A在DB之间,试求△AOD与△BOD面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序框图.设当箭头a指向①处时,输出的S的值为m,当箭头a指向②处时,输出S的值为n,则m+n=(  )
A.13B.14C.15D.16

查看答案和解析>>

同步练习册答案