分析 求出圆心和半径,设直线方程,由圆心C到切线的距离等于半径,求出待定系数的值.
解答 解:(1)圆C:(x+1)2+(y-2)2=2
当直线截距相等且不为0时,设直线方程为:$\frac{x}{a}+\frac{y}{a}=1$,即x+y-a=0,
则$d=\frac{{|{-1+2-a}|}}{{\sqrt{2}}}=\sqrt{2}$解得a=3或a=-1,所以方程为:x+y-3=0或x+y+1=0….4
(2)当直线截距互为相反数且不为0时,设直线为:$\frac{x}{a}-\frac{y}{a}=1$同理可求得:a=-1或-5.
所以直线方程为:x-y+1=0或x-y+5=0…..8
(3)当直线截距为0时,过坐标原点,y轴不合题意.
设直线为y=kx$d=\frac{{|{-k-2}|}}{{\sqrt{{k^2}+1}}}=\sqrt{2}$解得:$k=2±\sqrt{6}$,所以直线方程为:$y=({2±\sqrt{6}})x$
综上可知:直线方程为:x+y-3=0或x+y+1=0或x-y+1=0或x-y+5=0或$y=({2±\sqrt{6}})x$….12
点评 本题考查直线和圆的位置关系,点到直线的距离公式,体现了分类讨论的数学思想.注意分截距不等于0和截距等于0两种情况进行讨论,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ①和② | B. | ①和③ | C. | ①和④ | D. | ③和④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=x+\frac{4}{x}≥2\sqrt{x•\frac{4}{x}}=4$ | |
| B. | $y=sinx+\frac{4}{sinx}≥2\sqrt{sinx•\frac{4}{sinx}}=4\;(x为锐角)$ | |
| C. | $y=lgx+4{log_x}10≥2\sqrt{lgx•4{{log}_x}10}=4$ | |
| D. | $y={3^x}+\frac{4}{3^x}≥2\sqrt{{3^x}•\frac{4}{3^x}}=4$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,3) | B. | (-∞,3] | C. | (3,+∞) | D. | [3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{5}{4}$ | C. | $\frac{7}{4}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com