精英家教网 > 高中数学 > 题目详情
12.已知f(x)=$\left\{\begin{array}{l}(4-\frac{a}{2})x+4,x≤6\\{a}^{x-5},x>6\end{array}\right.$(a>0,a≠1),若f(x)是增函数,则a的取值范围是[7,8).

分析 由已知中函数f(x)≤在R上是单调递增函数,根据指数函数与一次函数单调性与参数的关系,我们可得一次函数的一次项系数大于0,且指数函数的底数大于1,且在x=6时,第一个解析式对应的函数值不小于第二段函数解析式对应的函数值.

解答 解:∵f(x)=$\left\{\begin{array}{l}(4-\frac{a}{2})x+4,x≤6\\{a}^{x-5},x>6\end{array}\right.$(a>0,a≠1),f(x)是增函数,
∴$\left\{\begin{array}{l}{4-\frac{a}{2}>0}\\{a>1}\\{{a}^{6-5}≥(4-\frac{a}{2}{)×6+4}^{\;}}\end{array}\right.$,
解得7≤a<8
故答案为:[7,8)

点评 本题考查的知识点是函数单调性的性质,其中根据指数函数和一次函数的单调性,及分段函数单调性的性质,构造关于a的不等式组是解答本题的关键.但在解答过程中,易忽略在x=6时,第一个解析式对应的函数值不小于第二段函数解析式对应的函数值,而错解为(1,8)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知S=$\frac{π}{200000}$(sin$\frac{π}{200000}$+sin$\frac{2π}{200000}$+sin$\frac{3π}{200000}$+…+sin$\frac{100000π}{200000}$),推测下列各值中与S最接近的是(  )
A.0.9988B.0.9999C.1.0001D.2.0002

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知F1、F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点P是椭圆上的任意一点,△PF1F2面积的最大值为$\sqrt{3}$,且椭圆的离心率为$\frac{1}{2}$.
(1)求椭圆的标准方程;
(2)设点Q(0,$\sqrt{3}$),点N在椭圆上,且直线QN的斜率存在,求使△QF2N面积取最大值时直线QN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.随机变量X的分布列为P(X=k)=$\frac{k-1}{120}$(k∈N*,2≤k≤16),则E(X)=$\frac{34}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设i是虚数单位,复数z满足(z+i)(1-i)=-2i,则z的共轭复数$\overline{z}$=(  )
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知2${\;}^{{x}^{2}+x}$<($\frac{1}{4}$)x-2,求函数y=2-x的值域.
(2)已知$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=($\sqrt{3}$,0),求<$\overrightarrow{a},\overrightarrow{b}$>

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求y=$\sqrt{3-x}$-$\sqrt{x}$-1的最值.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高二上文周末检测三数学试卷(解析版) 题型:解答题

已知数列

(1)求这个数列的第10项;

(2)是不是该数列中的项,为什么?

(3)求证:数列中的各项都在区间(0,1)内;

(4)在区间内有、无数列中的项?若有,有几项?若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(文)试卷(解析版) 题型:解答题

如图正四棱柱中,点上的点,的交点.

(Ⅰ)若平面,求证:点中点;

(Ⅱ)若的面积,点上,且,求三棱椎体积的大小.

查看答案和解析>>

同步练习册答案