分析 (1)根据线面平行的判定定理证明MN∥BC即可证明MN∥平面ABC;
(2)当λ=$\frac{1}{2}$时,根据面面垂直的判定定理证明CN⊥面APE即可证明面CMN⊥面APE.
解答 (1)证明:由M,N分别是线段AE,AP上的动点,且在△APE中,$\frac{AM}{AE}=\frac{AN}{AP}=λ$(0<λ<1),得MN∥PE,
又依题意PE∥BC,
∴MN∥BC.
∵MN?平面ABC,BC?平面ABC,
∴MN∥平面ABC.
(2)解:由已知平面PAC⊥平面ABC,
AC⊥BC,
∴BC⊥平面PAC,
∴BC⊥CN,
即BC⊥PE. …(9分)
在等边三角形PAC中,
∵λ=$\frac{1}{2}$,∴CN⊥PA,
∴CN⊥面APE,
∴面CMN⊥面APE…(12分)
点评 本题主要考查空间直线和平面平行以及平面和平面垂直的判定,要求熟练掌握相应的判定定理.
科目:高中数学 来源: 题型:选择题
| A. | ${C}_{4}^{3}$•${C}_{4}^{4}$ | B. | ${C}_{8}^{3}$-${C}_{4}^{3}$ | C. | 2${C}_{4}^{1}$•${C}_{4}^{2}$+${C}_{4}^{3}$ | D. | ${C}_{8}^{3}$-${C}_{4}^{3}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{2}$) | B. | (0,$\frac{2\sqrt{3}}{9}$) | C. | (0,$\frac{\sqrt{3}}{3}$) | D. | (0,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com