精英家教网 > 高中数学 > 题目详情
2.某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.从抽样的100根棉花纤维中任意抽取一根,则其棉花纤维的长度小于20mm的概率是(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{8}$D.$\frac{3}{5}$

分析 根据频率分布直方图每一个小矩形的面积等于该组的概率,易得到答案.

解答 解:由图可知,棉花纤维的长度小于20mm段的概率为(0.01+0.01+0.04)×5=0.3
故答案为:A.

点评 本题考查了频率分布直方图的相关知识,直方图中的各个矩形的面积代表了频率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=Asin(ωx+φ)(其中A,ω,φ为常数,且A>0,ω>0,$-\frac{π}{2}<φ<\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f(α)=$\frac{3}{2}$,求sin(2α+$\frac{π}{6}}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{1}{2}x$,则它的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在P地正西方向8km的A处和正东方向1km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设∠EPA=α(0<α<$\frac{π}{2}$).
(1)为减少对周边区域的影响,试确定E,F的位置,使△PAE与△PFB的面积之和最小;
(2)为节省建设成本,试确定E,F的位置,使PE+PF的值最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列关于函数f(x)=$\sqrt{3}$cos2x+tan(x-$\frac{π}{4}$)的图象的叙述正确的是(  )
A.关于原点对称B.关于y轴对称
C.关于直线x=$\frac{π}{4}$对称D.关于点($\frac{π}{4}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB⊥BC,且AB=$\sqrt{3}$,BC=4,AA1=3,M为棱AA1的中点,且AB1∩BM=P,AC1∩CM=Q.
(Ⅰ)求证:PQ∥平面BCC1B1
(Ⅱ)求多面体PQCBB1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知动点A在椭圆 C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上,动点B在直线 x=-2上,且满足 $\overrightarrow{OA}$⊥$\overrightarrow{OB}$(O为坐标原点),椭圆C上点 $M(\frac{{\sqrt{3}}}{2},3)$到两焦点距离之和为 4$\sqrt{3}$
(Ⅰ)求椭圆C方程.
(Ⅱ)判断直线AB与圆x2+y2=3的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=log0.80.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系是C(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知矩阵M=$(\begin{array}{l}{a}&{1}\\{0}&{b}\end{array})$(a>0,b>0).
(Ⅰ)当a=2,b=3时,求矩阵M的特征值以及属于每个特征值的一个特征向量;
(Ⅱ)当a=b时,曲线C:x2-y2=1在矩阵M的对应变换作用下得到曲线C′:x2-2xy-1=0,求a的值.

查看答案和解析>>

同步练习册答案