精英家教网 > 高中数学 > 题目详情
12.已知矩阵M=$(\begin{array}{l}{a}&{1}\\{0}&{b}\end{array})$(a>0,b>0).
(Ⅰ)当a=2,b=3时,求矩阵M的特征值以及属于每个特征值的一个特征向量;
(Ⅱ)当a=b时,曲线C:x2-y2=1在矩阵M的对应变换作用下得到曲线C′:x2-2xy-1=0,求a的值.

分析 (Ⅰ)通过令特征多项式f(λ)=(λ-2)(λ-3)=0,得λ=2或λ=3,进而可得结论;
(Ⅱ)利用$[\begin{array}{l}{a}&{1}\\{0}&{b}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{x′}\\{y′}\end{array}]$,并将变换公式代入曲线C′:x2-2xy-1=0,计算即可.

解答 解:(Ⅰ)∵a=2,b=3,∴M=$[\begin{array}{l}{2}&{1}\\{0}&{3}\end{array}]$,
令f(λ)=$|\begin{array}{l}{λ-2}&{-1}\\{0}&{λ-3}\end{array}|$=(λ-2)(λ-3)=0,
得λ=2或λ=3,
当λ=2时,由$[\begin{array}{l}{2}&{1}\\{0}&{3}\end{array}]$$\overrightarrow{{ξ}_{1}}$=2$\overrightarrow{{ξ}_{1}}$,得$\overrightarrow{{ξ}_{1}}$=$[\begin{array}{l}{1}\\{0}\end{array}]$,
当λ=3时,由$[\begin{array}{l}{2}&{1}\\{0}&{3}\end{array}]$$\overrightarrow{{ξ}_{2}}$=3$\overrightarrow{{ξ}_{2}}$,得$\overrightarrow{{ξ}_{2}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,
所以对应特征值为2的一个特征向量是$\overrightarrow{{ξ}_{1}}$=$[\begin{array}{l}{1}\\{0}\end{array}]$;
对应特征值为3的一个特征向量是$\overrightarrow{{ξ}_{2}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$.
(Ⅱ)设曲线C上的点P(x,y)在矩阵M的作用下变成P′(x′,y′),
则$[\begin{array}{l}{a}&{1}\\{0}&{b}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{x′}\\{y′}\end{array}]$,即$\left\{\begin{array}{l}{x′=ax+y}\\{y′=ay}\end{array}\right.$,
将变换公式代入曲线C′:x2-2xy-1=0,
可得(ax+y)2-2(ax+y)y-1=0,
即a2x2-y2-1=0,
即为曲线C:x2-y2=1,
∴a2=1,
又a>0,∴a=1.

点评 本题考查矩阵的变换性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.从抽样的100根棉花纤维中任意抽取一根,则其棉花纤维的长度小于20mm的概率是(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{8}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a=${log_{\frac{1}{2}}}\frac{2}{3}$,b=${log_{\frac{1}{2}}}\frac{1}{3}$,c=${(\frac{1}{2})^{0.3}}$,则(  )
A.c>b>aB.a>b>cC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是2;表面积是2+3$\sqrt{2}$+$\sqrt{22}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a∈R,那么函数f(x)=acosax的图象不可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若0<α<2π,cosα>$\frac{\sqrt{3}}{2}$,sinα<$\frac{1}{2}$,则角α的取值范围是(0,$\frac{π}{6}$)$∪(\frac{11π}{6},2π)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知O为△ABC的外心,BC=2,∠A=45°,∠B为锐角,则$\overrightarrow{OA}$•$\overrightarrow{BC}$的取值范围是(-2,2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60),由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的教师有48人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,C、D在半径为1的圆O上,线段AB是圆O的直径,则$\overrightarrow{AC}$$•\overrightarrow{BD}$的取值范围为[-4,$\frac{1}{2}$].

查看答案和解析>>

同步练习册答案