精英家教网 > 高中数学 > 题目详情
20.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是2;表面积是2+3$\sqrt{2}$+$\sqrt{22}$.

分析 由三视图及题设条件知,此几何体为一个四棱锥,其较长的侧棱长已知,底面是一个正方形,对角线长度已知,故先求出底面积,再求出此四棱锥的高,由体积公式求解其体积,再求出表面积即可.

解答 解:由三视图可知,这个四棱锥的侧面都是直角三角形,其底面为一个对角线长为2的正方形,正方形的边长为2sin45°=$\sqrt{2}$,其底面积为$4×\frac{1}{2}×1×1$=2.
由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形,
由于此侧棱长为$\sqrt{13}$,对角线长为2,故棱锥的高为$\sqrt{13-4}$=3,
此棱锥的体积为$\frac{1}{3}×2×3$=2,
又直角三角形的直角边为$\sqrt{9+2}$=$\sqrt{11}$,
则其表面积为:S=2+2×$\frac{1}{2}$×$\sqrt{2}$×3+2×$\frac{1}{2}$×$\sqrt{2}$×$\sqrt{11}$=2+3$\sqrt{2}$+$\sqrt{22}$.
故答案为:$2;2+3\sqrt{2}+\sqrt{22}$.

点评 本题考查由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在P地正西方向8km的A处和正东方向1km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设∠EPA=α(0<α<$\frac{π}{2}$).
(1)为减少对周边区域的影响,试确定E,F的位置,使△PAE与△PFB的面积之和最小;
(2)为节省建设成本,试确定E,F的位置,使PE+PF的值最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=log0.80.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系是C(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l:x-ky-5=0与圆O:x2+y2=10交于A,B两点且$\overrightarrow{OA}•\overrightarrow{OB}$=0,则k=(  )
A.2B.±2C.±$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若f(x)为奇函数,且x0是y=f(x)-ex的一个零点,则-x0一定是下列哪个函数的零点(  )
A.y=f(x)ex+1B.y=f(-x)e-x-1C.y=f(x)ex-1D.y=f(-x)ex+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设平面α与平面β相交于直线m,直线l1在平面α内,直线l2在平面β内,且l2⊥m,则“l1⊥l2”是“α⊥β”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知矩阵M=$(\begin{array}{l}{a}&{1}\\{0}&{b}\end{array})$(a>0,b>0).
(Ⅰ)当a=2,b=3时,求矩阵M的特征值以及属于每个特征值的一个特征向量;
(Ⅱ)当a=b时,曲线C:x2-y2=1在矩阵M的对应变换作用下得到曲线C′:x2-2xy-1=0,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线l:x-y+1=0与抛物线C:x2=4y交于A,B两点,点P为抛物线C上一动点,且在直线l下方,则△PAB的面积的最大值为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=logag(x)(x∈I),其中a>0且a≠1.
(Ⅰ)若函数f(x)是奇函数,试证明:对任意的x∈I,恒有g(x)•g(-x)=1;
(Ⅱ)若对于g(x)=ax,函数f(x)在区间[1,2]上的最大值是2,试求实数a的值;
(Ⅲ)设g(x)=ax2-x(x∈[3,4])且0<a<1,问:是否存在实数a,使得对任意的x1,x2∈[3,4],都有f(x1)>${a}^{{x}_{2}-3}$?如果存在,请求出a的取值范围;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案