精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=Asin(ωx+φ)(其中A,ω,φ为常数,且A>0,ω>0,$-\frac{π}{2}<φ<\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f(α)=$\frac{3}{2}$,求sin(2α+$\frac{π}{6}}$)的值.

分析 (1)由图可知A的值,由T=2[$\frac{2π}{3}-(-\frac{π}{3})$]=2π,可求ω=$\frac{2π}{2π}$=1,又$f(\frac{2π}{3})=2sin(\frac{2π}{3}+φ)=2$,且$-\frac{π}{2}<φ<\frac{π}{2}$,即可求得φ的值,从而可求函数f(x)的解析式.
(2)由$f(α)=\frac{3}{2}$,得$sin(α-\frac{π}{6})=\frac{3}{4}$.从而由$sin(2α+\frac{π}{6})=sin[{2(α-\frac{π}{6})+\frac{π}{2}}]=cos[{2(α-\frac{π}{6})}]$再根据二倍角公式即可求值.

解答 解:(1)由图可知,A=2,…2分
由T=2[$\frac{2π}{3}-(-\frac{π}{3})$]=2π,故ω=$\frac{2π}{2π}$=1,所以,f(x)=2sin(x+φ).…4分
又$f(\frac{2π}{3})=2sin(\frac{2π}{3}+φ)=2$,且$-\frac{π}{2}<φ<\frac{π}{2}$,故$φ=-\frac{π}{6}$.
于是,f(x)=$2sin(x-\frac{π}{6})$.…7分
(2)由$f(α)=\frac{3}{2}$,得$sin(α-\frac{π}{6})=\frac{3}{4}$.…9分
所以,$sin(2α+\frac{π}{6})=sin[{2(α-\frac{π}{6})+\frac{π}{2}}]=cos[{2(α-\frac{π}{6})}]$…12分
=$1-2{sin^2}(α-\frac{π}{6})=-\frac{1}{8}$.…14分.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的恒等变换及化简求值,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知tanx=2,则tan2(x-$\frac{π}{4}$)等于(  )
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知在△ABC中,C=$\frac{π}{4}$,cosB=$\frac{3}{5}$,AB=5,则sinA=$\frac{7\sqrt{2}}{10}$;△ABC的面积为14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx-2x+3,
(1)求函数f(x)的单调区间;
(2)设函数g(x)=$\frac{2t}{x}$-x+1,若g(x)>f(x)对x>0恒成立,求整数t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.从集合{1,2,3,4,5,6,7,8,9}中任取一个数记为x,则log2x为整数的概率为$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义在R上的函数f(x)满足f(-x)=-f(x).若方程f(x)=0有2015个实数根,则这2015个实数根之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(I)求直方图中x的值;
(Ⅱ)如果年上缴税收不少于60万元的企业可申请政策优惠,若共抽取企业1200个,试估计有多少企业可以申请政策优惠;
(Ⅲ)从企业中任选4个,这4个企业年上缴税收少于20万元的个数记为X,求X的分布列和数学期望.(以直方图中的频率作为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.两条不重合的直线a,b和平面α,则“a⊥α,b⊥α”是“a∥b”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.从抽样的100根棉花纤维中任意抽取一根,则其棉花纤维的长度小于20mm的概率是(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{8}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案