精英家教网 > 高中数学 > 题目详情
3.已知在△ABC中,C=$\frac{π}{4}$,cosB=$\frac{3}{5}$,AB=5,则sinA=$\frac{7\sqrt{2}}{10}$;△ABC的面积为14.

分析 由C=$\frac{π}{4}$,cosB=$\frac{3}{5}$,可得sinC=cosC=$\frac{\sqrt{2}}{2}$,sinB=$\sqrt{1-co{s}^{2}B}$,sinA=sin(B+C)=sinBcosC+cosBsinC.由正弦定理可得:$\frac{c}{sinC}=\frac{b}{sinB}$,可得b=$\frac{csinB}{sinC}$,再利用三角形面积计算公式即可得出.

解答 解:∵C=$\frac{π}{4}$,cosB=$\frac{3}{5}$,
∴sinC=cosC=$\frac{\sqrt{2}}{2}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$.
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{4}{5}×\frac{\sqrt{2}}{2}+\frac{3}{5}×\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$.
由正弦定理可得:$\frac{c}{sinC}=\frac{b}{sinB}$,可得b=$\frac{csinB}{sinC}$=$\frac{5×\frac{4}{5}}{\frac{\sqrt{2}}{2}}$=4$\sqrt{2}$,
∴S=$\frac{1}{2}×5×4\sqrt{2}$×$\frac{7\sqrt{2}}{10}$=14.
故答案分别为:$\frac{7\sqrt{2}}{10}$,14.

点评 本题考查了正弦定理的应用、同角三角函数基本关系式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A,B,C所对的边分别是a,b,c,已知sin(B+A)+sin(B-A)=2sin2A,且c=$\sqrt{7}$,C=$\frac{π}{3}$,则△ABC的面积是(  )
A.$\frac{3\sqrt{3}}{4}$B.$\frac{7\sqrt{3}}{6}$C.$\frac{\sqrt{21}}{3}$D.$\frac{3\sqrt{3}}{4}$或$\frac{7\sqrt{3}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知A(-2,0),B(2,0),动点P与A、B两点连线的斜率分别为kPA和kPB,且满足kPA•kPB=t (t≠0且t≠-1).
(1)求动点P的轨迹C的方程;
(2)当t<0时,曲线C的两焦点为F1,F2,若曲线C上存在点Q使得∠F1QF2=120°,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,A=30°,BC=2$\sqrt{5}$,点D在AB边上,且∠BCD为锐角,CD=2,△BCD的面积为4.
(Ⅰ)求cos∠BCD的值;
(Ⅱ)求边AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知非零平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,则“$\overrightarrow{a}$与$\overrightarrow{b}$共线”是“$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$共线”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某学科测试,要求考生从A,B,C三道试题中任选一题作答.考试结束后,统计数据显示共有420名学生参加测试,选择A,B,C题作答的人数如表:
试题ABC
人数180120120
(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从420份试卷中抽出若干试卷,其中从选择A题作答的试卷中抽出了3份,则应从选择B,C题作答的试卷中各抽出多少份?
(Ⅱ)若在(Ⅰ)问被抽出的试卷中,选择A,B,C题作答得优的试卷分别有2份,2份,1份.现从被抽出的选择A,B,C题作答的试卷中各随机选1份,求这3份试卷都得优的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={(m1,m2,m3)|m2∈{-2,0,2},mi=1,2,3}},集合A中所有元素的个数为27;集合A 中满足条件“2≤|m1|+|m2|+|m3|≤5”的元素个数为18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=Asin(ωx+φ)(其中A,ω,φ为常数,且A>0,ω>0,$-\frac{π}{2}<φ<\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f(α)=$\frac{3}{2}$,求sin(2α+$\frac{π}{6}}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{1}{2}x$,则它的离心率为$\sqrt{5}$.

查看答案和解析>>

同步练习册答案