精英家教网 > 高中数学 > 题目详情
1.两条不重合的直线a,b和平面α,则“a⊥α,b⊥α”是“a∥b”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

分析 根据充分必要条件的定义结合线面垂直的判定定理进行判断即可.

解答 解:若“a⊥α,b⊥α”⇒“a∥b”,是充分条件,
若“a∥b”推不出“a⊥α,b⊥α”,不是必要条件,
故选:B.

点评 本题考查了充分必要条件,考查线面关系,熟练掌握线面,线线平行、垂直的性质及判定是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在△ABC中,A=30°,BC=2$\sqrt{5}$,点D在AB边上,且∠BCD为锐角,CD=2,△BCD的面积为4.
(Ⅰ)求cos∠BCD的值;
(Ⅱ)求边AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=Asin(ωx+φ)(其中A,ω,φ为常数,且A>0,ω>0,$-\frac{π}{2}<φ<\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f(α)=$\frac{3}{2}$,求sin(2α+$\frac{π}{6}}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设点P在曲线y=x2+1(x≥0)上,点Q在曲线y=$\sqrt{x-1}$(x≥1)上,则|PQ|的最小值为$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex(lnx+k),(k为常数,e=2.71828…是自然对数的底数).函数y=f(x)的导函数为f′(x),且f′(1)=0.
(1)求k的值;
(2)设g(x)=f′(x)-2[f(x)+ex],φ(x)=$\frac{e^x}{x}$,g(x)≤t•φ(x)恒成立.求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.椭圆的一个顶点为M(0,$\sqrt{3}$),焦点在x轴上,若右焦点到直线x-y+1=0的距离为$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设n是过原点的直线,直线l与n垂直相交于点P且与椭圆相交于A、B两点,|$\overrightarrow{OP}$|=1,是否存在上述直线l使$\overrightarrow{AP}•\overrightarrow{PB}$=1成立?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{1}{2}x$,则它的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在P地正西方向8km的A处和正东方向1km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设∠EPA=α(0<α<$\frac{π}{2}$).
(1)为减少对周边区域的影响,试确定E,F的位置,使△PAE与△PFB的面积之和最小;
(2)为节省建设成本,试确定E,F的位置,使PE+PF的值最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=log0.80.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系是C(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

同步练习册答案