6£®ÍÖÔ²µÄÒ»¸ö¶¥µãΪM£¨0£¬$\sqrt{3}$£©£¬½¹µãÔÚxÖáÉÏ£¬ÈôÓÒ½¹µãµ½Ö±Ïßx-y+1=0µÄ¾àÀëΪ$\sqrt{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉènÊǹýÔ­µãµÄÖ±Ïߣ¬Ö±ÏßlÓën´¹Ö±ÏཻÓÚµãPÇÒÓëÍÖÔ²ÏཻÓÚA¡¢BÁ½µã£¬|$\overrightarrow{OP}$|=1£¬ÊÇ·ñ´æÔÚÉÏÊöÖ±Ïßlʹ$\overrightarrow{AP}•\overrightarrow{PB}$=1³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Éè³öÍÖÔ²·½³Ì£¬¿ÉµÃb=3£¬ÔËÓõ㵽ֱÏߵľàÀ빫ʽ£¬¼ÆËã¿ÉµÃc=1£¬ÔÙÓÉa£¬b£¬cµÄ¹ØÏµ¿ÉµÃa£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£®¼ÙÉèʹ$\overrightarrow{AP}•\overrightarrow{PB}$=1³ÉÁ¢µÄÖ±Ïßl´æÔÚ£®¢Ùµ±l²»´¹Ö±ÓÚxÖáʱ£¬ÉèlµÄ·½³ÌΪy=kx+m£¬ÓÉlÓën´¹Ö±ÏཻÓÚPµãÇÒ|$\overrightarrow{OP}$|=1£®µÃm2=k2+1£®½â·½³Ì¼´¿ÉµÃµ½²»´æÔÚ£¬¢Úµ±l´¹Ö±ÓÚxÖáʱ£¬ÔònΪxÖᣬPµã×ø±êΪ£¨1£¬0£©£¬A£¨1£¬$\frac{3}{2}$£©£¬B£¨1£¬-$\frac{3}{2}$£©£®·ûºÏÌâÒâµÄÖ±Ïßl²»´æÔÚ£®

½â´ð ½â£º£¨1£©ÉèÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬
Ôòb=$\sqrt{3}$£¬ÉèÓÒ½¹µãF£¨c£¬0£©£¬
Ôòd=$\frac{|c+1|}{\sqrt{2}}$=$\sqrt{2}$£¬½âµÃc=1£¬
Ôòa=$\sqrt{{b}^{2}+{c}^{2}}$=2£¬
ÔòÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÉèA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£®
¼ÙÉèʹ$\overrightarrow{AP}•\overrightarrow{PB}$=1³ÉÁ¢µÄÖ±Ïßl´æÔÚ£®
¢Ùµ±l²»´¹Ö±ÓÚxÖáʱ£¬ÉèlµÄ·½³ÌΪy=kx+m£¬
ÓÉlÓën´¹Ö±ÏཻÓÚPµãÇÒ|$\overrightarrow{OP}$|=1£®
µÃ$\frac{|m|}{\sqrt{1+{k}^{2}}}$=1£¬¼´m2=k2+1£®¢Ù
¡à$\overrightarrow{AP}$•$\overrightarrow{PB}$=1£¬|$\overrightarrow{OP}$|=1£®
¡à$\overrightarrow{OA}$•$\overrightarrow{OB}$=£¨$\overrightarrow{OP}$+$\overrightarrow{PA}$£©•£¨$\overrightarrow{OP}$+$\overrightarrow{PB}$£©
=${\overrightarrow{OP}}^{2}$+$\overrightarrow{PA}•\overrightarrow{PB}$+$\overrightarrow{OP}$•$\overrightarrow{PA}$+$\overrightarrow{OP}$•$\overrightarrow{PB}$=1-1+0=0£¬
¼´ÓÐ$\overrightarrow{OA}$¡Í$\overrightarrow{OB}$£¬
 ¼´x1x2+y1y2=0£®
½«y=kx+m´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£¬
µÃ£¨3+4k2£©x2+8kmx+4m2-12=0£®
¡ßlÓëCÓÐÁ½¸ö½»µã£¬
k¡Ù0£¬x1+x2=$\frac{-8km}{3+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$£®¢Ú
¡àx1x2+y1y2=x1x2+£¨kx1+m£©£¨kx2+m£©
=£¨1+k2£©x1x2+km £¨x1+x2£©+m2=0£®¢Û
½«¢Ú´úÈë¢ÛµÃ£¨1+k2£©•$\frac{4{m}^{2}-12}{3+4{k}^{2}}$+km•$\frac{-8km}{3+4{k}^{2}}$+m2=0£®
»¯¼ò£¬µÃ7m2=12£¨1+k2£©£®¢Ü
¡ß|$\overrightarrow{OP}$|=1£¬
¡àm¡Ù0  
ÓÉ¢Ù¡¢¢ÜµÃ£¬m=0²»³ÉÁ¢£®
¢Úµ±l´¹Ö±ÓÚxÖáʱ£¬
ÔònΪxÖᣬPµã×ø±êΪ£¨1£¬0£©£¬A£¨1£¬$\frac{3}{2}$£©£¬B£¨1£¬-$\frac{3}{2}$£©£®
¡à$\overrightarrow{AP}$=£¨0£¬-$\frac{3}{2}$£©£¬$\overrightarrow{PB}$=£¨0£¬-$\frac{3}{2}$£©£¬
¡à$\overrightarrow{AP}$•$\overrightarrow{PB}$=$\frac{9}{4}$¡Ù1£¬²»ºÏÌâÒ⣮
×ÛÉÏ£¬²»´æÔÚÉÏÊöÖ±Ïßlʹ$\overrightarrow{AP}•\overrightarrow{PB}$=1³ÉÁ¢£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄ½¹µãºÍ¶¥µã£¬ÒÔ¼°ÍÖÔ²·½³ÌºÍÖ±Ïß·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬ºÍÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÔÚÈçͼËùʾµÄÕý·½ÐÎÖÐËæ»úÖÀÒ»Á£¶¹×Ó£¬¶¹×ÓÂäÔÚ¸ÃÕý·½ÐÎÄÚÇÐÔ²µÄËÄ·ÖÖ®Ò»Ô²£¨ÈçͼÒõÓ°²¿·Ö£©ÖеĸÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{4}$B£®$\frac{¦Ð}{8}$C£®$\frac{¦Ð}{16}$D£®$\frac{¦Ð}{32}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨-x£©=-f£¨x£©£®Èô·½³Ìf£¨x£©=0ÓÐ2015¸öʵÊý¸ù£¬ÔòÕâ2015¸öʵÊý¸ùÖ®ºÍΪ0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+2cos¦Á}\\{y=2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦Â}\\{y=2+2sin¦Â}\end{array}\right.$£¨¦ÂΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóC1ºÍC2µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÒÑÖªÉäÏßl1£º¦È=¦Á£¨0£¼¦Á£¼$\frac{¦Ð}{2}$£©£¬½«l1ÄæÊ±ÕëÐýת$\frac{¦Ð}{6}$µÃµ½l2£º¦È=¦Á+$\frac{¦Ð}{6}$£¬ÇÒl1ÓëC1½»ÓÚO£¬PÁ½µã£¬l2ÓëC2½»ÓÚO£¬QÁ½µã£¬Çó|OP|•|OQ|È¡×î´óֵʱµãPµÄ¼«×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Á½Ìõ²»ÖغϵÄÖ±Ïßa£¬bºÍÆ½Ãæ¦Á£¬Ôò¡°a¡Í¦Á£¬b¡Í¦Á¡±ÊÇ¡°a¡Îb¡±µÄ£¨¡¡¡¡£©
A£®±ØÒª²»³ä·ÖÌõ¼þB£®³ä·Ö²»±ØÒªÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªa£¾0£¬a¡Ù1£¬a0.6£¼a0.4£¬Éèm=0.6loga0.6£¬n=0.4loga0.6£¬p=0.6loga0.4£¬Ôò£¨¡¡¡¡£©
A£®p£¾n£¾mB£®p£¾m£¾nC£®n£¾m£¾pD£®m£¾p£¾n

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑ֪ʵÊýa£¬bÂú×ãlog2a+log2b=1£¬Ôòab=2£¬£¨a+$\frac{1}{a}$£©£¨b+$\frac{2}{b}$£©µÄ×îСֵÊÇ3+2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èôsin£¨$\frac{¦Ð}{6}$-¦Á£©=$\frac{\sqrt{2}}{3}$£¬Ôòcos£¨$\frac{2¦Ð}{3}$+2¦Á£©=£¨¡¡¡¡£©
A£®-$\frac{5}{9}$B£®$\frac{5}{9}$C£®-$\frac{7}{9}$D£®$\frac{7}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÉèPÊÇÖ±Ïßx+y-4=0ÉϵÄÒ»¸ö¶¯µã£¬¹ýP×÷Ô²x2+y2=1µÄÇÐÏߣ¬ÇеãΪA£¬ÔòÇÐÏßPA³¤µÄ×îСֵΪ$\sqrt{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸