精英家教网 > 高中数学 > 题目详情
14.阅读如图所示的程序框图,程序结束时,输出S的值为(  )
A.6B.21C.58D.141

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得
S=0,k=1
满足条件k≤3,执行循环体,S=1,k=2
满足条件k≤3,执行循环体,S=6,k=3
满足条件k≤3,执行循环体,S=21,k=4
不满足条件k≤3,退出循环,输出S的值为21.
故选:B.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若函数$f(x)=\left\{{\begin{array}{l}{a(x-1)+1,x<-1}\\{{a^{-x}},x≥-1}\end{array},(a>0}\right.$,且(a≠1)是R上的单调函数,则实数a的取值范围(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,1)C.(0,$\frac{1}{3}$]D.[$\frac{1}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若关于x的不等式(m+1)x2-mx+m-1<0的解集为∅,则m的取值范围为[$\frac{2\sqrt{3}}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则ω、φ的值是(  )
A.2,$\frac{π}{8}$B.2,$\frac{π}{4}$C.1,$\frac{π}{3}$D.1,$\frac{2π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)将y=f(x)图象上所有点向右平移$\frac{π}{6}$个单位长度,得到y=g(x)的图象,求y=g(x)的图象离原点O最近的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.f(x)=3x6-2x5+x3+1,按照秦九韶算法计算x=2的函数值时,v4=(  )
A.17B.68C.8D.34

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(2cos2x,1),$\overrightarrow{b}$=(1,sin2x),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-1
(1)x∈[0,$\frac{π}{2}$]求函数f(x)的值域.
(2)求方程f(x)=k,(0$≤k<\sqrt{2}$),在[-$\frac{π}{8}$,$\frac{15π}{8}$]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在下列四个正方体中,能得出AB⊥CD的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设命题p:直线mx-y+1=0与圆(x-2)2+y2=4有公共点;设命题q:实数m满足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示双曲线.
(1)若“p∧q”为真命题,求实数m的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案