分析 化余弦为正弦,然后换元,再配方,最后利用“对勾函数”的单调性求得最值.
解答 解:f(x)=$\frac{1}{2-si{n}^{2}x}$+$\frac{1}{3-2co{s}^{2}x}$=$\frac{1}{2-si{n}^{2}x}+\frac{1}{1+2si{n}^{2}x}$
=$\frac{1+2si{n}^{2}x+2-si{n}^{2}x}{(2-si{n}^{2}x)(1+2si{n}^{2}x)}=\frac{3+si{n}^{2}x}{(2-si{n}^{2}x)(1+2si{n}^{2}x)}$.
令t=sin2x(0≤t≤1),
则原函数化为g(t)=$\frac{3+t}{(2-t)(1+2t)}=\frac{t+3}{-2{t}^{2}+3t+2}$
=$\frac{t+3}{-2(t+3)^{2}+15(t+3)-25}$=$\frac{1}{-[(t+3)+\frac{25}{t+3}]+15}$.
∵3≤t+3≤4,∴$-[(t+3)+\frac{25}{t+3}]+15$∈[$\frac{11}{3},\frac{19}{4}$].
∴$g(t)_{min}=\frac{4}{19}$.
即f(x)的最小值为$\frac{19}{4}$.
点评 本题考查函数的最值,考查了换元法、配方法以及“对勾函数”在求最值中的应用,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{3}$ | B. | $\frac{\sqrt{5}}{4}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{\sqrt{6}}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com