精英家教网 > 高中数学 > 题目详情
13.如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC.
(1)求三棱柱ABC-A1B1C1的体积;
(2)已知点D是平面ABC内一点,且四边形ABCD为平行四边形,在直线AA1上是否存在点P,使DP∥平面AB1C?若存在,请确定点P的位置,若不存在,请说明理由.

分析 (1)取AC中点O,连结AO,BO,摔倒导出BO⊥面A1ACC1,AO⊥面ABC,由此能求出三棱柱ABC-A1B1C1的体积.
(2)点P与A1重合时,连结AD,CD,A1D,推导出四边形A1B1CD是平行四边形,从而A1D∥B1C,由此得到DP∥平面AB1C.

解答 解:(1)取AC中点O,连结AO,BO,
∵在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC.
∴BO⊥面A1ACC1,∴BO⊥AO,A1C=A1A,∴AO⊥AC,∴AO⊥面ABC,
∴AO=BO=$\sqrt{4-1}$=$\sqrt{3}$,
∴三棱柱ABC-A1B1C1的体积:
V=S△ABC•AO=$\frac{1}{2}×AC×BO×AO$=$\frac{1}{2}×2×\sqrt{3}×\sqrt{3}$=3.
(2)点P与A1重合时,DP∥平面AB1C.
证明如下:
连结AD,CD,A1D,
∵四边形ABCD为平行四边形,∴A1B2$\underset{∥}{=}$AB$\underset{∥}{=}$CD,
∴四边形A1B1CD是平行四边形,∴A1D∥B1C,
∵B1C?平面AB1C,A1D?平面AB1C,∴A1D∥平面AB1C,
∴DP∥平面AB1C.

点评 本题考查三棱柱的体积的求法,考查满足线面平行的点的位置的判断与求法,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设数列{an}满足:a1=1,an+1=2an+1.
(1)证明:数列{an+1}为等比数列,并求出数列{an}的通项公式;
(2)求数列{n•(an+1)}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow{m}$=(2$\sqrt{3}$,1),$\overrightarrow{n}$=(cos2$\frac{A}{2}$,sinA),A,B,C是△ABC的内角.
(1)当A∈(0,$\frac{π}{2}$)时,求|$\overrightarrow{n}$|的取值范围;
(2)若C=$\frac{2π}{3}$,AB=3,当$\overrightarrow{m}$•$\overrightarrow{n}$取最大值时,求A的大小及边BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=a{x^3}+\frac{1}{2}(sinθ){x^2}-2x+c$的图象经过点$(1,\frac{37}{6})$,且在[-2,1]上单调递减,在[1,+∞)上单调递增.
(1)求函数解析式;
(2)是否存在实数m,使得对于任意的x1,x2∈[m,m+3](m≥0),不等式$|f({x_1})-f(x_2^{\;})|≤\frac{45}{2}$恒成立?若存在,求出m的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在复平面内,复数$\frac{2-i}{1+i}$(i是虚数单位)对应的点位于(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设a>0,函数f(x)=x+$\frac{{a}^{2}}{x}$,g(x)=x-lnx,若对任意x1∈(0,+∞),任意x2∈[1,e],都有f(x1)≥g(x2)成立,则实数a的取值范围为a≥$\sqrt{e-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数$y=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$在同一个周期内,当x=$\frac{π}{4}$时y取最大值2,当x=$\frac{7π}{12}$时,y取最小值-2.
(1)求函数的解析式y=f(x).
(2)若x∈[0,2π],且f(x)=$\sqrt{3}$时,求x的值;
(3)若函数f(x)满足方程f(x)=a(1<a<2),求在[0,2π]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.《中国好声音》每期节目有四位导师A,B,C,D参与.其规则是导师坐在特定的座椅上且背对歌手认真倾听其演唱,若每位参赛选手在演唱完之前有导师欣赏而为其转身,则该选手可以选择加入为其转身的导师的团队中接受指导训练;若出现多位导师为同一位学员转身,则选择权反转,交由学员自行选择导师,已知某期《中国好声音》中,8位选手唱完后,四位导师为其转身的情况统计如下:(记转身为T)
现从这8位选手中随机抽取两人考查他们演唱完后导师的转身情况.
(1)求选出的两人获得导师为其转身的人次和为4的概率;
(2)记选出的2人获得导师为其转身的人次之和为X,求X的分布列及数学期望E(X)
       导师
选手
ABCD
1TT
2TTTT
3T
4TT
5TTT
6TT
7TTTT
8TTT

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若集合A={x|x2+x-2<0},集合$B=\left\{{x|\frac{1}{x^2}>1}\right\}$,则A∩B=(  )
A.(-1,2)B.(-∞,-1)∪(1,+∞)C.(-1,1)D.(-1,0)∪(0,1)

查看答案和解析>>

同步练习册答案