分析 (1)取AC中点O,连结AO,BO,摔倒导出BO⊥面A1ACC1,AO⊥面ABC,由此能求出三棱柱ABC-A1B1C1的体积.
(2)点P与A1重合时,连结AD,CD,A1D,推导出四边形A1B1CD是平行四边形,从而A1D∥B1C,由此得到DP∥平面AB1C.
解答 解:(1)取AC中点O,连结AO,BO,![]()
∵在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC.
∴BO⊥面A1ACC1,∴BO⊥AO,A1C=A1A,∴AO⊥AC,∴AO⊥面ABC,
∴AO=BO=$\sqrt{4-1}$=$\sqrt{3}$,
∴三棱柱ABC-A1B1C1的体积:
V=S△ABC•AO=$\frac{1}{2}×AC×BO×AO$=$\frac{1}{2}×2×\sqrt{3}×\sqrt{3}$=3.
(2)点P与A1重合时,DP∥平面AB1C.
证明如下:
连结AD,CD,A1D,
∵四边形ABCD为平行四边形,∴A1B2$\underset{∥}{=}$AB$\underset{∥}{=}$CD,
∴四边形A1B1CD是平行四边形,∴A1D∥B1C,
∵B1C?平面AB1C,A1D?平面AB1C,∴A1D∥平面AB1C,
∴DP∥平面AB1C.
点评 本题考查三棱柱的体积的求法,考查满足线面平行的点的位置的判断与求法,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 导师 选手 | A | B | C | D |
| 1 | T | T | ||
| 2 | T | T | T | T |
| 3 | T | |||
| 4 | T | T | ||
| 5 | T | T | T | |
| 6 | T | T | ||
| 7 | T | T | T | T |
| 8 | T | T | T |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,2) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,1) | D. | (-1,0)∪(0,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com