【题目】已知椭圆的中心为原点,左焦点为,离心率为,不与坐标轴垂直的直线与椭圆交于两点.
(1)若为线段的中点,求直线的方程.
(2)求点是直线上一点,点在椭圆上,且满足,设直线与直线的斜率分别为,问:是否为定值?若是,请求出的值;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆的右焦点为,离心率为,过点的直线与相交于两点,点为线段的中点.
(1)当的倾斜角为时,求直线的方程;
(2)试探究在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为(为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;
(Ⅱ)若直线经过曲线的焦点且与曲线相交于两点,设线段的中点为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心为原点,左焦点为,离心率为,不与坐标轴垂直的直线与椭圆交于两点.
(1)若为线段的中点,求直线的方程.
(2)若点是直线上一点,点在椭圆上,且满足,设直线与直线的斜率分别为,问: 是否为定值?若是.请求出的值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:
则下列结论正确的是
A. 与2015年相比,2018年一本达线人数减少
B. 与2015年相比,2018年二本达线人数增加了倍
C. 2015年与2018年艺体达线人数相同
D. 与2015年相比,2018年不上线的人数有所增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系内,动点到定点的距离与到定直线距离之比为.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设点是轨迹上两个动点直线与轨迹的另一交点分别为且直线的斜率之积等于,问四边形的面积是否为定值?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com