分析 利用辅助角公式结合三角函数的对称性,结合二倍角公式进行求解即可.
解答 解:y=sin(πx+φ)-2cos(πx+φ)=$\sqrt{5}$sin(πx+φ-α),其中sinα=$\frac{2}{\sqrt{5}}$,cosα=$\frac{1}{\sqrt{5}}$.
∵函数的图象关于直线x=1对称,
∴π+φ-α=$\frac{π}{2}$+kπ,
即φ=α-$\frac{π}{2}$+kπ,
则sin2φ=sin2(α-$\frac{π}{2}$+kπ)=sin(2α-π+2kπ)=sin(2α-π)=-sin2α=-2sinαcosα
=-2×$\frac{2}{\sqrt{5}}$×$\frac{1}{\sqrt{5}}$=$-\frac{4}{5}$,
故答案为:$-\frac{4}{5}$
点评 本题主要考查三角函数值的计算,利用辅助角公式以及三角函数的对称轴是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${(\frac{1}{4})^a}<{(\frac{1}{4})^b}$ | B. | $\frac{1}{a}>\frac{1}{b}$ | C. | ln(a-b)>0 | D. | 3a-b<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{13}$ | B. | 2$\sqrt{3}$ | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com