精英家教网 > 高中数学 > 题目详情
16.已知函数y=sin(πx+φ)-2cos(πx+φ)(0<φ<π)的图象关于直线x=1对称,则sin2φ$-\frac{4}{5}$.

分析 利用辅助角公式结合三角函数的对称性,结合二倍角公式进行求解即可.

解答 解:y=sin(πx+φ)-2cos(πx+φ)=$\sqrt{5}$sin(πx+φ-α),其中sinα=$\frac{2}{\sqrt{5}}$,cosα=$\frac{1}{\sqrt{5}}$.
∵函数的图象关于直线x=1对称,
∴π+φ-α=$\frac{π}{2}$+kπ,
即φ=α-$\frac{π}{2}$+kπ,
则sin2φ=sin2(α-$\frac{π}{2}$+kπ)=sin(2α-π+2kπ)=sin(2α-π)=-sin2α=-2sinαcosα
=-2×$\frac{2}{\sqrt{5}}$×$\frac{1}{\sqrt{5}}$=$-\frac{4}{5}$,
故答案为:$-\frac{4}{5}$

点评 本题主要考查三角函数值的计算,利用辅助角公式以及三角函数的对称轴是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.圆(x-a)2+y2=1与直线y=x相切于第三象限,则a=(  )
A.-2B.2C.$-\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知|$\overrightarrow{a}$|=6,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$$•\overrightarrow{b}$=-12,则向量$\overrightarrow{b}$在向量$\overrightarrow{a}$上的投影是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在区间[0,2]上随机取一个实数x,则事件“3x-1<0”发生的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线的顶点在原点,焦点F在x轴上,且抛物线上横坐标为1的点到F的距离为2,过点F的直线交抛物线于A,B两点.
(Ⅰ)求抛物线的方程;
(Ⅱ)若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,求直线AB的斜率;
(Ⅲ)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为(  )
A.1B.$\frac{5}{3}$C.5D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知log${\;}_{\frac{1}{2}}$a<log${\;}_{\frac{1}{2}}$b,则下列不等式一定成立的是(  )
A.${(\frac{1}{4})^a}<{(\frac{1}{4})^b}$B.$\frac{1}{a}>\frac{1}{b}$C.ln(a-b)>0D.3a-b<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点M(1,1)是抛物线C上的一点,其焦点F在x轴上,顶点为坐标原点,动弦MP、MQ分别交x轴于A、B两点,且MA=MB
(1)求抛物线C的方程;
(2)求过F且与OM垂直的直线的方程;
(3)求直线PQ的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若曲线x=$\frac{1}{4}$y2上的动点P到A(-1,2$\sqrt{3}$)的距离与到y轴的距离之和为d,则d的最小值是(  )
A.$\sqrt{13}$B.2$\sqrt{3}$C.3D.4

查看答案和解析>>

同步练习册答案