精英家教网 > 高中数学 > 题目详情
8.已知向量$\overrightarrow{m}$=(cosα-$\frac{{\sqrt{2}}}{3}$,-1),$\overrightarrow{n}$=(sinα,1),$\overrightarrow{m}$与$\overrightarrow{n}$为共线向量,且α∈[-$\frac{π}{2}$,0].
(1)求sinα+cosα的值;             
(2)求$\frac{sin2α}{sinα-cosα}$的值.

分析 (1)利用平面向量共线的性质可得$({cosα-\frac{{\sqrt{2}}}{3}})×1-({-1})×sinα=0$,整理即可得解.
(2)由(1)利用二倍角的正弦函数公式可求$sin2α=-\frac{7}{9}$,进而可得${({sinα-cosα})^2}=1-sin2α=\frac{16}{9}$,结合范围$a∈[{-\frac{π}{2},0}]$,可求sinα-cosα的值,即可得解.

解答 解:(1)∵m与n为共线向量,向量$\overrightarrow{m}$=(cosα-$\frac{{\sqrt{2}}}{3}$,-1),$\overrightarrow{n}$=(sinx,1),
∴$({cosα-\frac{{\sqrt{2}}}{3}})×1-({-1})×sinα=0$,
即$sinα+cosα=\frac{{\sqrt{2}}}{3}$;
(2)∵$1+sin2α={({sinα+cosα})^2}=\frac{2}{9}$,
∴$sin2α=-\frac{7}{9}$,
∴${({sinα-cosα})^2}=1-sin2α=\frac{16}{9}$,
又∵$a∈[{-\frac{π}{2},0}]$,
∴sinα-cosα<0,
∴sinα-cosα=-$\frac{4}{3}$,
∴$\frac{sin2α}{sinα-cosα}$=$\frac{7}{12}$.

点评 本题主要考查了平面向量共线的性质,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知f(x)是定义在R上的函数,满足f(x)=-f(-x),且当x<0时,f(x)=x•$\root{3}{-1-x}$,则f(9)=18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Asin(ωx+φ)+b(A>0,ω>0)的图象如图所示,则f(x)的解析式为(  )
A.$f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+2$B.$f(x)=3sin({\frac{1}{3}x-\frac{π}{6}})+2$C.$f(x)=2sin({\frac{π}{6}x+\frac{π}{6}})+3$D.$f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+3$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设{an}是正数组成的等比数列,公比q=2,且a1a2a3…a33=233,则a3a6a9…a33=(  )
A.211B.215C.220D.222

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|x-a|+|x-5|.
(1)当a=1时,求f(x)的最小值;
(2)如果对任意的实数x,都有f(x)≥1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知方程x2+ax+b=0的一根在(0,1)上,另一根在(1,2)上,则$\frac{2-b}{3-a}$的取值范围是(  )
A.(2,+∞)B.$(-∞,\frac{1}{2})$C.$(\frac{1}{2},2)$D.$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若x,y满足线性约束条件$\left\{\begin{array}{l}{x≤3}\\{x+y≥0}\\{x-y+5≥0}\end{array}\right.$,则z=2x+4y的最大值为38.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若a1,a2,a3,a4四个数成等比数列,则$|{\begin{array}{l}{a_1}&{a_2}\\{{a_3}}&{a_4}\end{array}}|$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.曲线f(x)=sinx+ex+2在点(0,f(0))处的切线方程为y=2x+3.

查看答案和解析>>

同步练习册答案