精英家教网 > 高中数学 > 题目详情
18.已知f(x)是定义在R上的函数,满足f(x)=-f(-x),且当x<0时,f(x)=x•$\root{3}{-1-x}$,则f(9)=18.

分析 利用函数的奇偶性,真假求解函数值即可.

解答 解:f(x)是定义在R上的函数,满足f(x)=-f(-x),函数是奇函数,
当x<0时,f(x)=x•$\root{3}{-1-x}$,则f(9)=-f(-9)=-(-9)×$\root{3}{-1+9}$=18.
故答案为:18;

点评 本题考查函数的奇偶性的性质,函数值的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设集合A={-4,t2},集合B={t-5,9,1-t},若9∈A∩B,则实数t=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆心为(3,0),而且与y轴相切的圆的标准方程为(x-3)2+y2=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|x|-x+1,则不等式f(1-x2)>f(1-2x)的解集为{x|x>2或x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=$\frac{a•{2}^{x}+a+2}{{2}^{x}+1}$(x∈R),若f(x)满足f(-x)=-f(x).
(1)求实数a的值;
(2)证明f(x)是R上的单调减函数(定义法).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=xln(x+$\sqrt{2a+{x}^{2}}$(a>0)为偶函数.
(1)求a的值;
(2)求g(x)=ax2+2x+1在区间[-6,3]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={0,1},B={x,y,z},则从集合A到集合B的映射可能有(  )种.
A.6B.8C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{6}}$)+b(ω>0),且函数图象的对称中心到对称轴的最小距离为$\frac{π}{4}$,当x∈[0,$\frac{π}{4}}$]时,f(x)的最大值为1.
(I)求函数f(x)的解析式;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{12}$个单位长度得到函数g(x)图象,若g(x)-3≤m≤g(x)+3在x∈[0,$\frac{π}{3}}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{m}$=(cosα-$\frac{{\sqrt{2}}}{3}$,-1),$\overrightarrow{n}$=(sinα,1),$\overrightarrow{m}$与$\overrightarrow{n}$为共线向量,且α∈[-$\frac{π}{2}$,0].
(1)求sinα+cosα的值;             
(2)求$\frac{sin2α}{sinα-cosα}$的值.

查看答案和解析>>

同步练习册答案